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Context - Uncertainty Quantification

Simulation code of a mechanical structure:

q parameters
(E, ν,L, ...)

An output quantity
(σ,u, ...)

In an uncertainty quantification context, those parameters are considered as
an input continuous random vector:

Black Box
ϕ

X Y

with X = (X1, ..., Xq)
t with values on the domain X ⊆ Rq and defined by a

given Probability Density Function (PDF) fX .
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Context - 1st uncertainty source

One could be interested in assessing the following expectation of a particular
function τ of Y = ϕ(X) (e.g. a mean or a probability of failure):

EfX [τ (ϕ (X))] =

∫
X
τ (ϕ (x)) fX (x) dx. (1.1)

The Monte Carlo (MC) estimator of this integral is given by (assuming τ = Id
for illustration):

µ̂MC =
1

NX

NX∑
j=1

ϕ
(
X(j)

)
, (1.2)

with X(j) i.i.d.∼ fX and NX the size of the sample of simulations. A first uncer-
tainty source is related to this sample, defined as X̃ in the following process:

X̃ = {X(j), j = 1, . . . , NX} µ̂MC
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Context - 2nd uncertainty source

In a realistic context, the PDF fX may be unknown [1]. Thus, the probabilistic
model has to be inferred from experimental tests:

D̃ = {D(i), i = 1, . . . , ND}
with D(i) i.i.d.∼ fX

f̂X|D̃

with ND the size of the sample of experiments D̃. The estimation f̂X|D̃ [2, 3]

of the PDF fX induces a second uncertainty source related to D̃.

[1] G Sarazin. Analyse de sensibilité fiabiliste en présence d’incertitudes épistémiques introduites par les données d’apprentissage. PhD
thesis, Toulouse, ISAE, 2021.
[2] James K Lindsey et al. Parametric statistical inference. Oxford University Press, 1996.
[3] A J Izenman. Review papers: Recent developments in nonparametric density estimation. Journal of the american statistical associa-
tion, 86(413):205-224, 1991.

4GST AFMC. SURGET19/10/2023



Context - 2nd uncertainty source

Figure 1.1: Impact of the size of the sample of experiments (a) on the identification of the probabilistic model and (b) on the mean estimate
for an univariate Gaussian distribution.
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Context - Problematics

D̃ = {D(i), i = 1, . . . , ND}
with D(i) i.i.d.∼ fX

f̂X|D̃

X̃ = {X(j), j = 1, . . . , NX}
with X(j) i.i.d.∼ f̂X|D̃

µ̂MC

Problem A
How to take into account the uncertainty of
the sample of experiments in the variance
of the estimator?

Problem B
In order to improve efficiently the accuracy
of the estimator, should the data enrichment
be made in the sample of experiments or
the sample of simulations?
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Context - Small-Data

D̃ = {D(i), i = 1, . . . , ND}
with D(i) i.i.d.∼ fX

f̂X|D̃

X̃ = {X(j), j = 1, . . . , NX}
with X(j) i.i.d.∼ f̂X|D̃

µ̂MC

• Limited size ND:
the small-data context is imposed by costly
physical experiments.

• Limited size NX :
the small-data context is imposed by the sim-
ulation time induced by the model complexity.

Physical experiments-Simulations
trade-off
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Context - Goal

Physical
experiments

Probabilistic model
identification

Drawing samples
of simulations

Black box
evaluations

Estimation(A)

Stop?

Decision process(B)

End

Decision?

no

yes

Enrichment in
experiments

Enrichment in
simulations

The desired method gathers:

• A trade-off with negligible numeri-
cal cost.

• A guarantee of the robustness of
the estimate.

• A reuse of data at subsequent en-
richment stages.
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Proposed approach - Estimation

Physical
experiments

Probabilistic model
identification

Drawing samples
of simulations

Black box
evaluations

Estimation(A)

Stop?

Decision process(B)

End

Decision?

no

yes

Enrichment in
experiments

Enrichment in
simulations

[4] V Chabridon. Analyse de sensibilité fiabiliste avec prise en
compte d’incertitudes sur le modèle probabiliste-Application aux sys-
tèmes aérospatiaux. PhD thesis, UCA(2017-2020), 2018.
[5] A Owen and Y Zhou. Safe and effective importance sam-
pling. Journal of the American Statistical Association,95(449):135-
143, 2000.

Problem A
How to take into account the uncertainty
of the sample of experiments in the vari-
ance of the estimator?

Expectation with double integral:

Ef
(X,D̃)

[ϕ (X)] =

∫
XND

∫
X
ϕ (x) f(X,D̃)(x, d̃)dx dd̃.

Nested estimator with Importance Sampling:

µ̂N−IS =
1

N

N∑
k=1

1

NX

NX∑
j=1

ϕ
(
X

(j)
k

) f̂X|D̃k
(X

(j)
k )

g(X
(j)
k )

µ̂N−IS =
1

N

N∑
k=1

µ̂IS
k ,

with X
(j)
k

i.i.d.∼ g and N the number of samples
of experiments [4, 5].
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Proposed approach - Small-data context

Physical
experiments

Probabilistic model
identification

Drawing samples
of simulations

Black box
evaluations

Estimation
with IS

Stop?

Decision process(B)

End

Decision?

no

yes

Enrichment in
experiments

Enrichment in
simulations

In a small-data context, only one ND-
sample D̃ of limited size is available.

Resampling method
Allows to generate N samples of exper-
iments from an initial one [6, 7]. (e.g.
Bootstrap [BS])

Solution A
The nested estimator is conditioned on
the initial sample of experiment but the
uncertainty related to it is considered.

Variance of estimation:

Vf
(X,D̃)

[
µ̂N−IS

]
=

1

N
Vf

(X,D̃)

[
µ̂IS

]
.

[6] C H Yu. Resampling methods: concepts, applications, and justification. Practical Assessment, Research, and Evaluation, 8(1):19, 2002.
[7] B Efron. The jackknife, the bootstrap and other resampling plans. SIAM, 1982.
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Proposed approach - Sensitivity analysis

Physical
experiments

Bootstrap

Probabilistic model
identification

Drawing samples
of simulations

Black box
evaluations

Estimation
with IS

Stop?

Decision process(B)

End

Decision?

no

yes

Enrichment in
experiments

Enrichment in
simulations

Problem B
In order to improve efficiently the accu-
racy of the estimator, should the data en-
richment be made in the sample of exper-
iments or the sample of simulations?

An ANalysis Of VAriance [8, 9] is performed:

[8] I M Sobol’. Sensitivity analysis for non-linear mathematical
models. Mathematical modelling and computational experiment,
1:407-414, 1993.
[9] F Gamboa et al. Statistical inference for Sobol pick-freeze
Monte Carlo method. Statistics, 50(4):881–902, 2016.
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Problem B
In order to improve efficiently the accu-
racy of the estimator, should the data en-
richment be made in the sample of exper-
iments or the sample of simulations?

An ANalysis Of VAriance [8, 9] is performed:

SD =
V
[
E
[
µ̂IS |D̃

]]
V [µ̂IS ]

SX =
V
[
E
[
µ̂IS |X̃

]]
V [µ̂IS ]

Interpretation of Sobol’ indices:

SD → proportion due to the sample of experiments

SX → proportion due to the sample of simulations

[8] I M Sobol’. Sensitivity analysis for non-linear mathematical
models. Mathematical modelling and computational experiment,
1:407-414, 1993.
[9] F Gamboa et al. Statistical inference for Sobol pick-freeze
Monte Carlo method. Statistics, 50(4):881–902, 2016.
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Proposed approach - Synthesis

Physical
experiments

Bootstrap

Probabilistic model
identification

Drawing samples
of simulations

Black box
evaluations

Estimation
with IS

Stop?

Sensitivity analysis

End

SX > SD

no

yes

noEnrichment in
experiments

yes Enrichment in
simulations

The proposed approach:

A) Takes into account the uncertainty of
the sample of experiments.

B) Guides the data enrichment in the
driving source of uncertainty.

C) Faces a minimized cost, equivalent to
a classic MC method.

D) Updates itself to guarantee the robust-
ness of the estimate.
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Illustrations - Cantilever Beam

Mean deflection of the free end of a cantilever beam:

Figure 3.1: Representation of a cantilever beam where F is the transverse load
applied on the free end of the beam of length L, Young’s modulus E and

cross-section bh.

ϕ (F,L,E, b, h) =
4FL3

Ebh3

Figure 3.2: Histogram of each marginal distribution built on a sample of experiments of size ND = 25 [10].
A probabilistic model is identified on this sample (in red).

[10] L Baoyu et al. Reliability analysis based on a novel density estimation method for structures with correlations. Chinese Journal of
Aeronautics, 30(3):1021-1030, 2017.
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Illustrations - Trajectory of enrichment

Cantilever beam toy case (q = 5) with non-parametric identification (Mean):

(a) (b)

Figure 3.3: Approach applied to a test case of a cantilever beam of dimension q = 5 with a sample of experiment of initial size
ND = 25 and a sample of simulations of initial size NX = 140. The enrichment step is set to 20. (a) Trajectory of enrichment taken

by the algorithm for the cantilever beam toy case. (b) Estimation of the Quantity of Interest (QoI) during data enrichment. The expected
convergence value is E[ϕ(X)] ≈ 16.403[mm].
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Illustrations - Near optimal trajectory

Cantilever beam toy case (q = 5) with non-parametric identification (Mean):

(a) (b)

Figure 3.4: Comparison between the guided trajectory and random trajectories of enrichment. (a) Trajectory of enrichment guided by
sensitivity analysis (in red) alongside 20 random trajectories. (b) Coefficient of variation assessed during data enrichment. The coefficient

of variation related to the guided trajectory (in red) is one of the lowest.
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Illustrations - Near optimal trajectory

Cantilever beam toy case (q = 5) with non-parametric identification (Mean):

(a) (b)

Figure 3.5: Repetition of the approach. (a) Trajectory of enrichment guided by sensitivity analysis obtained on 40 repetitions. (b) Average
coefficient of variation assessed on 40 repetitions during data enrichment. The coefficient of variation related to the guided trajectory (in

red) is one of the lowest.
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Illustrations - Impact of the QoI: failure probability

Virkler experiment toy case (q = 3) with parametric identification (Probability):

(a) (b)

Figure 3.6: Repetition of the approach on a Virkler experiment toy case. (a) Trajectory of enrichment guided by sensitivity analysis obtained
on 20 repetitions. (b) Average coefficient of variation assessed on 20 repetitions during data enrichment. The expected value

P[τ (ϕ (X)) ⩽ Ns] ≈ 0.126 is obtained with a 107 MC sample.
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Conclusion

Framework
• The probabilistic model is unknown and is inferred from physical experiments,

• A small-data context is imposed by costly physical experiments and a costly black box
function.

Current method
A) Takes into account the uncertainty of the sample of experiments,

B) Answers the physical experiments-simulations trade-off by guiding the investment of data in
the driving source of uncertainty.

C) Faces a minimized cost, equivalent to a classic Monte Carlo method.

D) Updates itself to guarantee the robustness of the estimate.

Perspectives
• Improvement of the approach: data quantification, budget, ...

• Application to buckling tests of thin-shell structures.
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Appendix A - IS and cost reduction

Physical experiments

Probabilistic model
identification

Simulations? Auxiliary PDF

Drawing samples
of simulations

Black box evaluationsEstimation

Stop?

Sensitivity analysis

End

SX > SD

BS

no

yes

no

yes

noEnrichment in
physical experiments

yes Enrichment in
simulations

An update of the probabilistic model
does not affect the sample of simulations
X̃. An additional cost reduction is
possible with Bootstrap (BS).

Resampling method
Bootstrap (BS) allows to generate N
sample of simulations from the initial one.

Solution C
The cost of the whole approach is re-
duced to NX . It is equivalent to a MC
simulation that does not consider the un-
certainty of the sample of experiments.



Appendix B - MIS

Physical experiments

Probabilistic model
identification

Simulations? Auxiliary PDF
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no

yes
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Problem D
How to define an adequate auxiliary PDF
as the probabilistic model evolves?

Multiple IS (MIS) [5]:

µ̂N−MIS =
1

N

N∑
k=1

1

NX

NX∑
j=1

ϕ
(
X

(j)
k

) f̂X|D̃k
(X

(j)
k )

1
NX

∑NX

l=1 f̂X|D̃l
(X

(j)
k )

µ̂N−MIS =
1

N

N∑
k=1

µ̂MIS
k ,

with X
(j)
k

i.i.d.∼ 1
NX

∑NX

l=1 f̂X|D̃l
. The choosen auxil-

iary PDF updates itself and remains close to target

PDFs.

Variance of estimation:

Vf
(X,D̃)

[
µ̂N−MIS

]
=

1

N
Vf

(X,D̃)

[
µ̂MIS

]
.

[5] A Owen and Y Zhou (2000). Safe and effective importance sampling. Journal of the American Statistical Association.



Appendix C - Transformation for a MC procedure

Isoprobabilistic transformation
The transformation TD [11, 12] is performed here to work with an
independent sample Ũ = {U (j), j = 1, ..., NX}:

TD : [0, 1]d −→ X
U 7−→ X

, (4.1)

with U (j) i.i.d.∼ U [0, 1]
d.

[11] AE Brockwell. Universal residuals: A multivariate transformation. Statistics probability letters, 2007.
[12] R Lebrun et al. Do rosenblatt and nataf isoprobabilistic transformations really differ? Probabilistic Engineering Mechanics, 2009.



Appendix D - ANOVA interpretation

(a) (b)

Figure: Evolution of Sobol’ indices for the cantilever beam toy-case at ND = [10, 100, 190] and (a) NX = 150 (b) NX = 450.
Estimation of n = 20 indices for each combination.



Appendix E - Update of auxiliary PDF

An investment of hX data performed in the input sample. When the reference
database D̃ has been updated by pD data prior to this investment, the new
PDFs are hence estimated from more relevant databases and are added to
the mixture so that

g =
1

NX + hX

NX∑
i=1

f̂
(ND)
i +

NX+hX∑
i=NX+1

f̂
(ND+hD)
i

 , (4.2)

where f̂
(n)
i is the PDF estimated from the database D̃i of size n.



Appendix F - Global N-MIS estimator

The global N-MIS estimator at each investment step is therefor given by

µ̂N−MIS
(M,P )

=
1

N

N∑
k=1

1

N
(P )
X

N
(P )
X∑

j=1

ϕ
(
X

(j)
k

) f̂
((M))
k (X

(j)
k )

g((P ))(X
(j)
k )

, (4.3)

with



g(0) =
1

NX
(0)

NX
(0)∑

i=1

f̂
(0)
i

g(P ) =
N

(P−1)
X

N
(P )
X

g(P−1) +
1

N
(P )
X

N
(P )
X∑

i=1+N
(P−1)
X

f̂
(M)
i

,

where X
(j)
k

i.i.d.∼ g(P ) and ND
(M) is the size at the M -th step of investment in

the reference database whereas N
(P )
X is the size at the P -th step of investment

in the reference input sample.



Appendix G - Direct sensitivity analysis
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Appendix H - Impact of the output behavior

Firespread toy case (q = 10) with non-parametric identification (Mean):

(a) (b)

Figure: (a) Histogram of the output of Rothermel’s modified model and (b) a focus on values lower than the 99%-quantile. The maximum
value obtained as the output of the model is Rmax = 419cm s−1 . The mean is estimated at E[ϕ(X)] ≈ 0.89cm s−1 with a

standard deviation σY = 2.32cm s−1 .



Appendix H - Impact of the output behavior

Firespread toy case (q = 10) with non-parametric identification (Mean):

(a) (b)

Figure: Approach applied to a test case of a firespread of dimension q = 10 with a sample of experiment of initial size ND = 25 and a
sample of simulations of initial size NX = 140. The enrichment step is set to 100. (a) Trajectory of enrichment taken by the algorithm

for the cantilever beam toy case. (b) Estimation of the QoI during data enrichment.
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