

June 4tn, 2019 | Garrett Eng COEs - Vibratec

Hybrid Approach for "Turbocharger-Vehicle" Vibration Management Garrett

CMT-AFM 2019 Annual Meeting, Garrett Advancing Motion

Garrett's Automotive Turbocharges

Fully Floating Bearing

Semi Floating Bearing

Ball Bearing

Air Foil Bearing

Hybrid Modelling Flow Chart

Hybrid Modeling Technics

A sub-structuring method for complex systems

- Coupling techniques
 - "Modal coupling": Not appropriate for "Turbocharger structure-Exhaust line system" due to very high modal density on the frequency range 100-4500 Hz (> 250 modes)
 - "FRF based sub-structuring (FBS)": Measured and/or predicted FRFs can be coupled

Application on "Turbocharger-Vehicle" Vibration Identification

Fundamentals

$$H_{obia}^{S} = H_{obcb}^{B}.(H_{caca}^{A} + H_{cbcb}^{B})^{-1}.H_{caia}^{A}$$

- How FRFs are collected:
 - 1) By **test** on separated sub-structures: turbocharger and vehicle exhaust system
 - 2) By **prediction** (FEA) on the turbocharger and by **test** on exhaust system, separated from each other
 - 3) By **test** on the "turbocharger-vehicle exhaust system" assembly (so-called <u>FRF reference</u>) Note: same excitation & response points are used on (1), (2) & (3)
- Coupling process:
 - FBS technique is used for coupling FRFs from (1) or (2)
 - For validation purpose the FBS prediction is compared with test data from (3)

FRFs: Hybrid (FBS) vs Test (Reference)

FBS vs Test Correlation (cont.)

- Represents potential acoustic power radiated by surface.
- Can be used to compare noise radiation potential of different components in turbo + exhaust assembly.

"Turbocharger-Vehicle" Nonlinear Vibration Analysis

4 Pillars of Garrett's Turbocharger RBS Development

- Differentiated Strategy: "Product-Process-Vehicle" performance optimization
- Operating System: "Get It Right the First Time"
 - Dynamic stability
 - Balanceability performance
 - "Turbocharger-Vehicle" Vibro-Acoustics management
- Superior Financials
 - Fast, Optimized and Cost saving solution
- People Development
 - A global and cross functional user team will be trained

