20 years of methodologies applied to the welding of large components

F.Boitout (ESI Group), Ph.Mourgue (ESI France) AFM-SNS 26th of March 2015

www.esi-group.com

Introduction

Welding simulation: Treasure hunting, Graal quest?

- Welding simulation in its 30ies:
- The needs are there:
 - Worldwide competition
 - The profits are done with added value parts
- The means are almost available
 - Computer power
 - Dedicated software
 - Knowledge (methods)

• Next years challenge: Impact of manufacturing on service life of components and assemblies.

Physics should not be a bottleneck

What is a large object?

From the eyes of a welding simulation persona

- Components size
 - Nuclear component
 - BIW
 - •
- Welding length
 - Multipass
 - Additive Manufacturing
- TEST INIT STRAIN 1/0.212500 908.31946 843 43945 778 55951 713.67957 648.7996 583.919 454 15973 389.27975 324.39981 259.51984 194 63988 129.75992 64 87996 0.0000
- Large components with long welds
 - Heat exchanger
 - Turbines
 - Complex designs (Iter Vaccum chamber, ships, cars...)

What is expensive?

- Model description:
 - CAD 2 Mesh
 - Process definition
- Solution:
 - Physics:
 - Heat transfer
 - Metallurgy
 - Mechanical
 - ...
 - Numeric
 - Element types
 - Coupling or chaining?
 - Methods
 - Solving
- Analysis of results
 - Extract information: G(Stress, strain, temperature, internal var...) = F(X, t)
 - Virtual reality visualization tools

Example: Service life assessment of a welded large component

- Pre-heat to 160° C
- Deposit Cladding Layer
- Deposit Buttering Layer
- Post Weld Heat Treatment for Stress Relief
- Root pass of Groove Weld
- Continue Groove welding until all beads are deposited
- Release Clamps
- Post-weld Machining of Groove weld
- Service Cycle (Temperature, Pressure)

1: Be simple

Keep It Simple Stupid (KISS)

- 2D models
 - Multi-pass
- Welding of shells 2.5 D
 - Automotive
- (Pass grouping)
 - Multi-pass in 3D
- (Super-elements)
 - Turbines
- Inherent strain and Thermal cycle methods
 - Very Large components

Transient Welding Modeling Process optimization for Multi-Pass Welding of thick components

get it right

Welding of shells 2.5D

Simplified methodologies (automotive)

2: Be specific

Usage of the welding process specificities

- Stationary process
 - Steady state computation
 - Ariane tank
 - Modelization of Residual stresses in Aluminum welded joints, J.P. Bonnafé, C. Destandau, Aérospatiale Les Mureaux, France, 25-28 September 1995
- Local process: Local-global methods
 - DSIGN project 1998-2001:
 - S.A. Tsirkas, P. Papanikos, K. Pericleous, N. Strusevich, F. Boitout, J.M. Bergheau, « Evaluation of distortions of laser welded shipbuilding parts using a local-global finite element approach », Science and Technology of Welding and Joining, Vol. 8, 2, The Institute of Materials, **2003**, pp. 79-88.
 - B. Souloumiac, F. Boitout, J.M. Bergheau, « A new local global approach for modelling of welded steel component distorsions », Proc. of 6th Int. Seminar on Numerical Analysis of Weldability, UK **2001**, and Mathematical modelling of Weld Phenomena 6, edited by Pr. H. Cerjak, The Institute of Materials, London, **2002**, pp 997-1013.

Local-Global method

ITER Vaccum chamber

get it right®

Fig. 1 The fusion reactor and the vacuum vessel with zone for the full-scale model

Fig. 6 PS2 (inner shell) local and global models

Fig. 8 Comparison of measured and computed shrinkages after PS1 welding

=

8 mm

Fig. 10 Comparison of measured and computed shrinkages after PS2 inner shell welding

Fig. 5 PS1 local and global models

3: Be an applied mathematician

Use numerics

• Explicit formulation

IMPLICIT: CPU ~ 2h DMP8

Phase de soudage Facteur echelle temps mecanique x1000 CPU : DMP32 = 35min Memoire = 14Mb

Phase de soudage Facteur echelle temps mecanique x10 000 CPU : DMP32 = 10min Memoire = 14Mb

- Multiscale
 - Local mesh refinement

14

4: Be a computer power user Moore law

- Parallelization
 - SMP/DMP
 - Speed-up
 - Solvers (direct/iterative)
 - "robustness" vs RAM consumption
 - GPU

Þ

Mechanical Computation

Don't forget the analysis.. Virtual reality 3D for Assembly

Conclusion

- Remark 1:
 - All models are made more and more complex until they reach the limits. *Engineers have a tendency to try to push the envelop (even if it is not necessary)*.
- Remark 2:
 - The limit of a chain is the limit of the weakest part. Welding of large components limitation is not necessarily the *solving* limit.
- Remark 3:
 - Welding simulation has greatly improved in 30 years, the challenge is not anymore simulate the welding operation, but the full manufacturing itself. The skill of the engineer is still a *must-have* to select methods and assumptions with a global vision.

17

Papers

- D. Dubois, J. Devaux, J.B. Leblond, "Numerical simulation of a welding operation : calculation of residual stresses and hydrogen diffusion", Proc. of ICPVT 5, **1985**
- F. Faure, J.M. Bergheau, J.B. Leblond, B. Souloumiac, "Prediction of distortions of large thin structures during welding using shell elements and multiscale approaches", Proc. 7th Int. Seminar Numerical Analysis of Weldability, Graz, **2003**.
- F. Faure, J.M. Bergheau, J.B. Leblond, « Welding simulation with shell elements », Proc. 2nd Int. Conf. On Thermal Process Modelling and Computer Simulation, Nancy, April **2003**.
- B. Souloumiac, F. Boitout, J.M. Bergheau, « A new local global approach for modelling of welded steel component distorsions », Proc. of 6th Int. Seminar on Numerical Analysis of Weldability, UK **2001**, and Mathematical modelling of Weld Phenomena 6, edited by Pr. H. Cerjak, The Institute of Materials, London, **2002**, pp 997-1013.
- S.A. Tsirkas, P. Papanikos, K. Pericleous, N. Strusevich, F. Boitout, J.M. Bergheau, « Evaluation of distortions of laser welded shipbuilding parts using a local-global finite element approach », Science and Technology of Welding and Joining, Vol. 8, 2, The Institute of Materials, 2003, pp. 79-88.
- B. Souloumiac, F. Boitout, J.M. Bergheau, « A new local global approach for modelling of welded steel component distorsions », Proc. of 6th Int. Seminar on Numerical Analysis of Weldability, UK **2001**, and Mathematical modelling of Weld Phenomena 6, edited by Pr. H. Cerjak, The Institute of Materials, London, **2002**, pp 997-1013.
- P. Duranton, J. Devaux, V. Robin, P. Gilles and J.M. Bergheau, *3D modelling of multipass welding of a 316L stainless steel pipe*, Proceedings of the International Conference on Advances on Materials and Processing Technologies, AMPT2003, pages 974-977
- Modelization of Residual stresses in Aluminum welded joints, J.P. Bonnafé, C. Destandau, Aérospatiale Les Mureaux, France, 25-28 September 1995

