

En mémoire de l'apport décisif de Jean Fançois Jullien.

De l'intérêt de la comparaison Calcul expérience: illustration sur le cas du Flambage.

Combescure (INSA Lyon)

Séminaire SNS Paris 23 mars 2017

Contexte

Beaucoup d'ingénieurs sont persuadés que la simulation numérique apporte la réponse à toutes les questions de « design » qu'ils se posent.

Je vais illustrer sur l'exemple du dimensionnement au Flambage que ce n'est pas si « évident »

La maitrise de la « modélisation » est essentielle pour que les simulations rendent bien compte de la réalité.

Contexte

On va illustrer ce propos sur trois exemples

- 1) Le chemin qui a conduit JF Jullien à l'invention du concept de la coque ASTER puis son optimisation
- 2) Le dimensionnement au flambage sous gradient de température
- 3) Le dimensionnement du flambage sous fluage

On essayera de comprendre comment la confrontation Systématique entre simulation et expérience permet une meilleure compréhension de la physique

Plan

■ I' histoire des coques ASTER

 L'histoire du dimensionnement des réacteurs GEN IV au flambage thermique

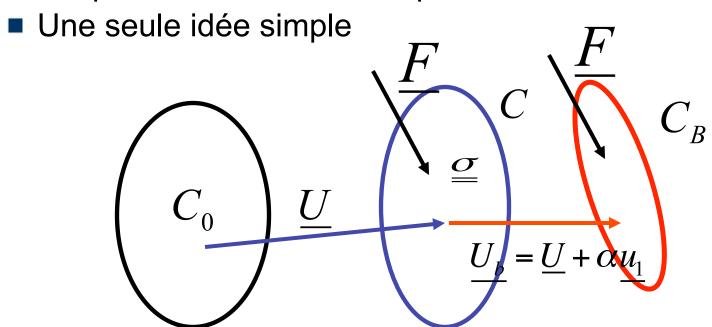
Le flambage sous fluage

Les coques ASTER

- Notion élémentaire de flambage
- Flambage de cylindres lisses en compression axiale et pression externe
- Le concept de coques ASTER
- Optimisation
- Les coques Wavy

Instabilités

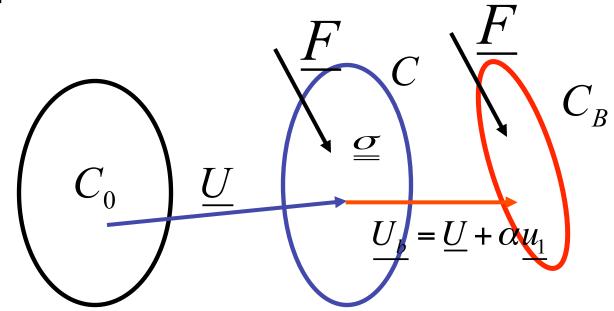
- Tous les codes de calculs savent prédire un équilibre mais rares sont ceux qui savent proprement répondre à la question : « cet équilibre est il STABLE ? ».
- On « oublie » presque toujours de se poser la question tant il est parfois difficile de trouver l'équilibre en non linéaire.
- est ce que l'équilibre que j'ai trouvé est unique ?



Instabilités

La question de la stabilité: prévoir la stabilité.

L'état C est en equilibre. Est il stable ?



Instabilités

L'équilibre C est il stable ?

On perturbe la configuration C par un petit déplacement αu_1 : Si l'Energie de C_B > energie de C pour toutes les perturbations possibles => C Stable

Instabilités: comment prédire?

Calculer les différences des energies

$$\Delta W = W_{C_B}(U + \alpha u_1) - W_C(U)$$

$$W = W^{def} + W^{cin} - W^{ext}$$

■ Prendre la limite quand $\alpha \rightarrow 0$

$$U_B = U + \alpha U_1$$

Instabilités: comment prédire?

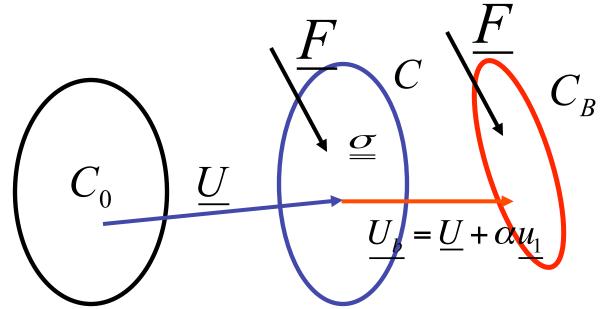
Instabilité (Flambage non linéaire)

■ FEM=> Equation

$$K_{T}(U)\underline{u_{1}} = 0$$

$$<=> \left(K(U) + K(\underline{\sigma})\right)\underline{u_{1}} = \underline{0}$$

- U σ état INSTABLE
- U₁ mode de flambage qui peut être très différent de U
- K(U) raideur K(σ) raideur non linéaire



Instabilités: ATTENTION aux symétries

Si l'équilibre C est instable

Le plus souvent l'instabilité est associée à une PERTE de symétrie. Alors attention aux symétries imposées au modèle pour calculer plus vite....

Cylindres sous compression axiale

- La charge expérimentale de flambage d'un cylindre en compression axiale est en général trois fois plus faible que la charge théorique
- Pourquoi? Les petites imperfections de géométrie ont une très grande influence
- Mais pourquoi cet effet est il si grand?
- C'est assez simple: la charge critique est la même pour une vingtaine de modes...
- Il y a toutes les chances que l'imperfection qui est quelque part sur le cylindre excite l'un de ces modes

Cylindres sous charge combinée : pression externe et compression axiale

- Sous pression externe 3 modes très voisins (et identiques aux modes en compression axiale)
- En cas de combinaison même effet des imperfections

Mode de flambage typique

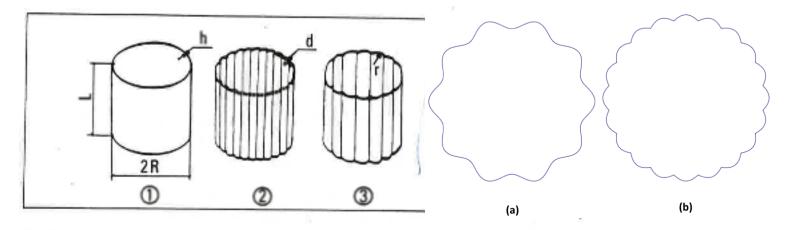
 Une grande sensibilité aux imperfections quand la compression axiale est intense

Que faire pour avoir des meilleures coques

 Les symétries de la coque (ici symétrie de révolution) sont mauvaises pour la stabilité

Peut on trouver des coques moins sensibles ?

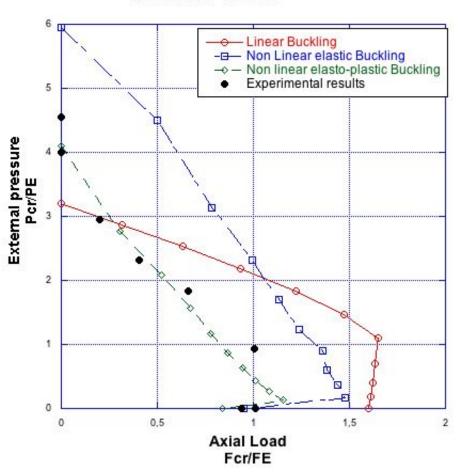
- L'IDEE de JF Jullien: inventer une forme qui casse les symetries sur les modes critiques...La coque ASTER
- 20 ans plus tard à Caltech le concept Wavy Shell généralise l'idée en partant d'une optimisation d'une coque déformée par des nurbs (NING IJSS 2016)



Le concept de coque ASTER (Jullien AMSES 2015)

Le concept de coque ASTER

Tuer le développement du mode de flambage en ajoutant une « imperfection » initiale bien choisie....


Le concept de coque ASTER

- Les résultats: essais et calculs
- MONTRENT Que cette coque résiste à
- Une pression externe *4
- À la même charge axiale

que le cylindre parfait

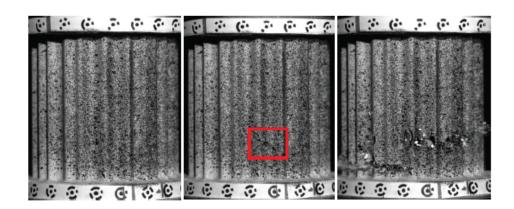
Aster 22 Vaults Interaction- Results

Le concept « WAVY Shell » (NING IJSS 2016)

Le concept WAVY Shell

Section typique trouvée par optimisation basée sur des calculs 3D non linéaires de coques imparfaites déformées par Nurbs.

Sur ces coques il n'y a plus aucune symétrie!!!! Mais compliqué à fabriquer...

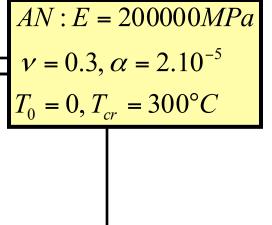

Les coques WAVY Shell

Les resultats: essais et calculs (pour la seule compression

axiale)

	Buckling Load [kN]	Failure Load [KN]	
	(Perfect Shell)	Prediction	Test
Wavy Shell 1		11.90	11.48
Wavy Shell 2	10.44	11.65	11.68
Wavy Shell 3		11.78	11.30

Coque insensible aux imperfections initiales



Flambage thermique

- 1ère idée: une charge thermique disparaît dès que la structure se déforme donc pas dangereuse
- mauvais modèle: exemple cylindre encastré chauffé uniformément
- => compression axiale
- flambe pour

$$\sigma_{axial} = -E\alpha(T - T_0)$$

$$T_{cr} = T_0 + \frac{T}{\alpha} \frac{t}{R} \frac{1}{\sqrt{3(1 - v^2)}}$$

Flambage thermique

Importance des gradients: peut on flamber sous gradient de température seul?

Réponse intuitive: non car les gradients induisent des flexions => pas de contrainte de membrane dans la coque => pas de flambage sans charge mécanique (membrane)

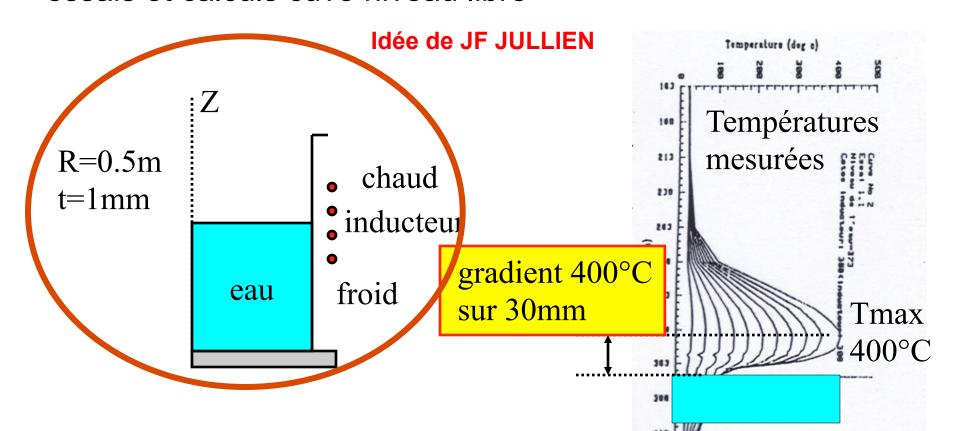
Flambage thermique

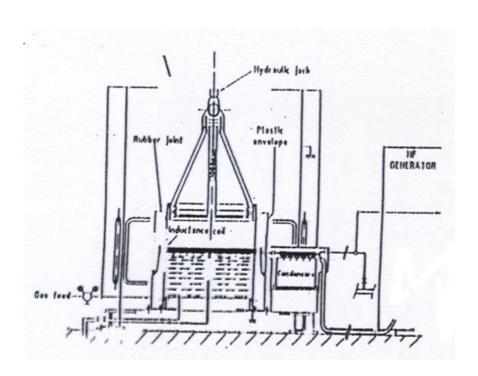
Dans les calculs de dimensionnement de SPX (1985) (comme GEN IV) on trouve des modes de flambage à petite longueur d'onde très localisés au dessus du niveau libre de SODIUM...

On n'avait jamais vu cela...

Les calculs sont ils "vrais"? Ou bien a t on une erreur de formulation?

Faire des essais JF Jullien

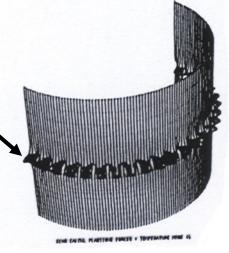



Flambage thermique


- Certains gradients induisent des contraintes de membrane
- essais et calculs cuve niveau libre

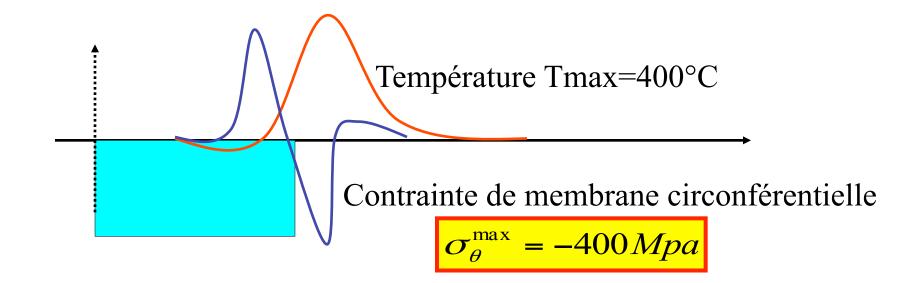
Flambage thermique sous gradient de température

Montage expérimental



Flambage thermique

- Gradient 400°C sur 30mm
- observation expérimentale:
- calcul: flambage plastique pourquoi ?



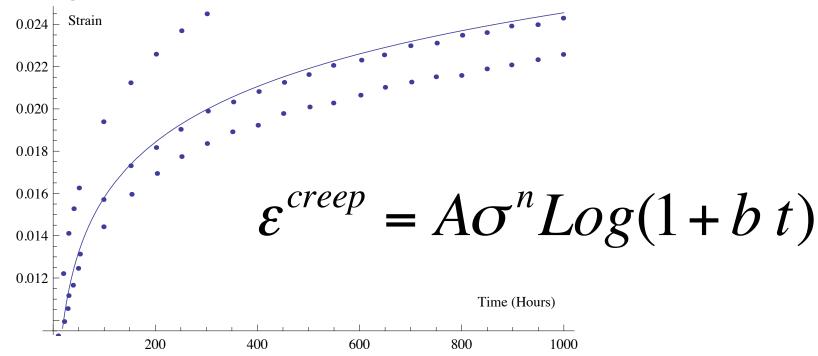
Flambage thermique

- flambage plastique mode élevé: pourquoi ?
- Contraintes de membrane de compression circonférentielles élevées sur une courte distance dues à la dilatation empéchée => flambage sur mode élevé

- Dans certains cas de fonctionnement températures très élevées et pression externe sur un cylindre (SPX et GEN IV)
- = => fluage: combiné à un risque d'instabilité....
- Très difficile à prévoir par le calcul... Incertitudes sur la géométrie (imperfections initiales) se combinent à la dispersion du comportement en fluage...
- Essais pour essayer de voir ce que "valent" les calculs...

- Apport décisif de JF Jullien: trois idées ...
- 1) Métal qui "flue" à température ambiante (pas besoin de chauffer)
- 2) travailler sur des ortho-cylindres minces en pression externe
- 2) un système "basique" de mise en pression externe insensible aux aléas électriques: dépressuriser l'intérieur du cylindre par une trompe à eau....le débit dans le venturi régle la dépression.

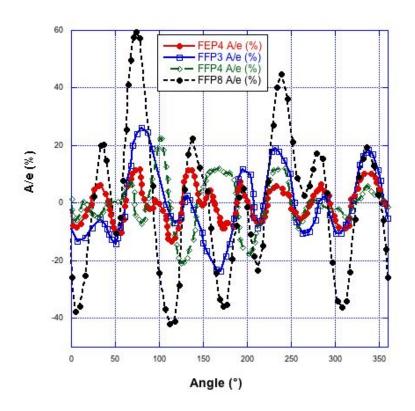
- 35 essais de caractérisation du comportement en fluage. Ils durent au moins 1000 Heures . 5 essais par niveau de contrainte appliqué (de 0.2 Sy à 2 SY) (idée de la dispersion)
- Chaque cylindre caractérisé: imperfections, épaisseur courbes de traction.
- Ensuite 12 essais de flambage sous fluage.



Flambage sous fluage

- Caractérisation comportement en fluage
- Assez grande dispersion.

3 lois de fluage identifées: loi, moyen, rapide

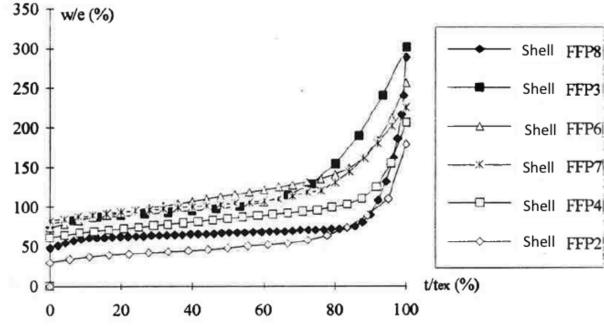


Flambage sous fluage

Géométrie mesurée avec grand soin

Rayon à mi hauteur 4 cylindres

décomposée en serie de Fourier



Flambage sous fluage

Evolution de la géométrie avec le temps mesurée en un

point critique ...

Observe brusque accélération vers 90% du temps critique

- Est il possible de prévoir le temps critique par le calcul?
- Exercice difficile..CALCUL 3D 18 000 elements Coque 4 noeuds intégration épaisseur
- 3 lois de fluage rapide lente moyenne
- 2 types de défauts calculés:
- A) Défaut mesuré
- B) "modal" amplitude maxi pour voir ce que donnerait une méthode de design basée sur ce défaut "conventionnel" (on ne connait pas la forme du défaut avant d'avoir construit!!!)

- Résultats du calcul du temps critique:
- A) Défaut mesuré à mi hauteur : on encadre les temps critique avec les lois de fluage lent et rapide... Mais grande différence des temps critiques ainsi prévus

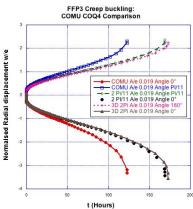
Cylinder	Experiment	Slow	Mean	Fast
FFP3	70.	109.	65.	35.
FFP3	72.	172.	96.	50.
FFP8	144.	194.	108.	55.

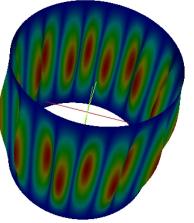
Flambage sous fluage

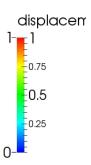
- Résultats du calcul du temps critique:
- B) Défaut "modal". Loi de fluage moyenne: Ce qu'on fait à l'étape du Design!!!

Cylindre	Expérience	Défaut Mesuré	Défaut Modal max	Défaut Modal moyen
FFP ₃	70h	65h	o , 7h	9h
FFP4	72h	96h	o,6h	12h
FFP8	144h	108h	o,3h	9h

Pas bien bon!!!






Flambage sous fluage

Evolution déplacement radial calculé

Forme du mode critique

Flambage sous fluage: conclusion

- Phénomène brutal...
- Méthode de Design actuel basée sur le déafut "modal" n'est pas sure pour les coques très minces (sensibles aux imperfections initiales)
- La seule prédiction raisonnable peut être obtenue en injectant la géométrie "réelle"