Universal Sensitivity Indices - Application to Stochastic Codes and Second Level SA #### Agnès Lagnoux Institut de Mathématiques de Toulouse Université Toulouse Jean Jaurès TOULOUSE - FRANCE Journée du GST "Mécanique et Incertain" October 19th, 2023 ## Outline of the talk ## Introduction Framework Motivation # Stochastic codes Our procedure Numerical study Second level sensitivity analysis Link with stochastic computer codes Numerical study #### Complex function f depending on several variables : $$y = f(x_1, \ldots, x_p)$$ #### where - **1** the inputs x_i pour i = 1, ..., p are objects; - f is deterministic and unknown. It is called a black-box. #### Wishes - **1** Evaluate y for any value of the p-uplet (x_1, \ldots, x_p) . - ② Identify the most important variables to be able to fix the less important ones to their nominal value. ## Probabilistic frame In order to quantify the influence of a variable, it is common to assume that the inputs are random : $$X := (X_1, \ldots, X_p) \in \mathcal{X} = \mathcal{X}_1 \times \ldots \times \mathcal{X}_p.$$ Then f is a measurable function that can be evaluated on runs and the output code Y becomes random too : $$Y=f(X_1,\ldots,X_p).$$ The question is: how one may quantify the amount of randomness that a variable or a group of input variables bring to the output Y? ## Toy example Let have a look on a simple example : $$(X_1, X_2, X_3, X_4) \mapsto Y = X_1 + X_2 + X_1X_3$$ where X_1 , X_2 , X_3 , X_4 are independent, centered and so that $$Var(X_1) = Var(X_3) = Var(X_4) = 1, \ Var(X_2) = 2.$$ Obviously, - **1** Y is not depending on X_4 ; - ② X_2 should be more influent than X_1 at first order since its variance is greater than the one of X_1 ; - 3 X_1 should be more influent than X_3 as it appears once alone (term X_1) and once related to X_3 (term X_1X_3). ## The so-called Sobol' indices An input variable is influent if its variations lead to strong variations on the output Y. \Rightarrow Build an index of influence on the variance of the output Y. For instance, the first order Sobol' index with respect to $X_{\mathbf{u}} = (X_i, i \in \mathbf{u})$ where $\mathbf{u} \subset \{1, \cdots, p\}$ is given by $$S^{\mathbf{u}} = \frac{\operatorname{Var}(\mathbb{E}[Y|X_{\mathbf{u}}])}{\operatorname{Var}(Y)}$$ (assuming Y is scalar). Such indices stem from the Hoeffding decomposition of the variance of f (or equivalently Y) that is assumed to lie in L^2 . ## Toy example (continued) We consider again $$Y = f(X) = f(X_1, X_2, X_3, X_4) = X_1 + X_2 + X_1X_3$$ where X_1 , X_2 , X_3 , X_4 are independent, centered and so that $$Var(X_1) = Var(X_3) = Var(X_4) = 1, \ Var(X_2) = 2.$$ Then $$S^1 = 1/4, \ S^2 = 1/2, \ S^{13} = 1/4,$$ and $$S^3 = S^4 = S^{12} = S^{14} = S^{23} = S^{24} = S^{34} = 0, S^{ijk} = 0 \ \forall i, j, k.$$ ## Motivatory example for second level SA Let us consider the linear model $$Y=X_1+X_2,$$ where X_1 and X_2 are two independent centered random variables with respective variance θ^2 and $1 - \theta^2$. Donc Var(Y) = 1. ## Motivatory example for second level SA Let us consider the linear model $$Y=X_1+X_2,$$ where X_1 and X_2 are two independent centered random variables with respective variance θ^2 and $1 - \theta^2$. Donc Var(Y) = 1. Naturally, the first order Sobol' indices are given by $$S^1 = rac{ ext{Var}(\mathbb{E}[Y|X_1])}{ ext{Var}(Y)} = heta^2$$ and $S^2 = rac{ ext{Var}(\mathbb{E}[Y|X_2])}{ ext{Var}(Y)} = 1 - heta^2$ so that $$S^1 < S^2$$ if $\theta < 1/\sqrt{2}$ and $S^1 \geqslant S^2$ if $\theta \geqslant 1/\sqrt{2}$. ## Second level sensitivity analysis The second level uncertainty corresponds to the uncertainty on the type of the input distributions and/or on the parameters of the input distributions. #### Outline of the talk #### Introduction Framework Motivation #### Stochastic codes Our procedure Numerical study #### Second level sensitivity analysis Link with stochastic computer codes Numerical study #### Introduction to stochastic codes $$Y=f(X_1,\ldots,X_p).$$ Here f is assumed to be a stochastic code : two evaluations of the code for the same input $x^* = (x_1^*, \dots, x_p^*)$ lead to two different outputs. The practitioner is then interested in the distribution μ_{x^*} of the output Y for a given x^* . ## How to perform? #### A first step to deal with stochastic codes A natural way to handle stochastic computer codes is definitely - to consider the expectation of the output code - and to perform GSA on this expectation. #### Our procedure This type of code can be traduced in terms of a deterministic code by considering an extra input D which is not chosen and not observed by the practitioner itself but which is a latent variable generated randomly by the computer code and independently of the classical input (X_1, \dots, X_p) . #### References for this work #### F. Gamboa, P. Gremaud, T. Klein, and A. Lagnoux. Global Sensitivity Analysis: a new generation of mighty estimators based on rank statistics. Bernoulli. 2022. #### J.-C. Fort, T. Klein, and A. Lagnoux. Global sensitivity analysis and Wasserstein spaces. SIAM UQ, 2021. ## Two related (deterministic) applications Thus one considers • a first (deterministic) code $$f_s: \quad \mathcal{E} \times \mathcal{D} \quad \rightarrow \quad \mathbb{R}$$ $(x,d) = (x_1, \dots, x_p, d) \quad \mapsto f_s(x,d) = f_s(x_1, \dots, x_p, d);$ a second (deterministic) code whose output is a probability measure $$f: \mathcal{E} \to \mathcal{M}_2(\mathbb{R})$$ $x \mapsto \mu_x.$ Obviously, in practice, one does not assess the output of f but one can only obtain an empirical approximation of the measure μ_{\times} given by n evaluations of f_{S} at \times . Further, f can be seen as an ideal version of f_s . ## In practice... Concretely, for a single random input $X^* \in \mathcal{E} = \mathcal{E}_1 \times \cdots \times \mathcal{E}_p$, we evaluate n times f_s (so that the code will generate independently n hidden variables D_1, \ldots, D_n) and one may observe $$f_s(X^*,D_1),\ldots,f_s(X^*,D_n)$$ leading to the measure $$\mu_{X^*,n} = \frac{1}{n} \sum_{k=1}^n \delta_{f_s(X^*,D_k)}$$ approximating the distribution $\mu_{X^*} = f(X^*)$. Remind the random variables D_1, \ldots, D_n are not observed. ## In practice... Finally, the general design of experiments is the following: $$\begin{array}{cccc} (X_{1},D_{1,1},\ldots,D_{1,n}) & \to & f_{s}(X_{1},D_{1,1}),\ldots,f_{s}(X_{1},D_{1,n}), \\ & & \vdots & \\ (X_{N},D_{N,1},\ldots,D_{N,n}) & \to & f_{s}(X_{N},D_{N,1}),\ldots,f_{s}(X_{N},D_{N,n}), \end{array}$$ where $N \times n$ is the total number of evaluations of the stochastic computer code f_s . Then we construct the approximations of μ_{X_j} for any $j=1,\ldots,N$ given by $$\mu_{X_j,n} = \frac{1}{n} \sum_{k=1}^n \delta_{f_s(X_j,D_{j,k})}.$$ #### Framework and notation Here, the output of the code f is a probability measure (or equivalently a density or a cumulative distribution function) on \mathbb{R} . Then we introduce the Wasserstein metric W_2 of order 2 on the output space : for two probability measures μ and ν with c.d.f. F_μ and F_ν respectively, one has $$\begin{split} W_2^2(\mu,\nu) &= \inf \left\{ \mathbb{E} \left[d(X,Y)^2 \right] \; ; \, \mathbb{P}_X = \mu \; \text{and} \; \mathbb{P}_Y = \nu \right\} \\ &= \int_0^1 (F_\mu^{-1}(t) - F_\nu^{-1}(t))^2 dt = \mathbb{E} [|F_\mu^-(U) - F_\nu^-(U)|^2]. \end{split}$$ Here F_{μ}^{-1} and F_{ν}^{-1} are the generalized inverses of the increasing functions F_{μ} and F_{ν} and $U \sim \mathcal{U}([0,1])$. ## Natural origin Recall that the Sobol' index is given by $$S^{\mathbf{u}} = \frac{\operatorname{Var}(\mathbb{E}[Y|X_{\mathbf{u}}])}{\operatorname{Var}(Y)} = \frac{\mathbb{E}[(\mathbb{E}[Y] - \mathbb{E}[Y|X_{\mathbf{u}}])^2]}{\operatorname{Var}(Y)}$$ that generalizes in the Cramér-von Mises index defined as $$\begin{split} S_{2,CVM}^{\mathbf{u}} &= \frac{\int_{\mathbb{R}} \mathbb{E}\left[\left(\mathbb{E}[\mathbb{1}_{Y \leqslant t}] - \mathbb{E}[\mathbb{1}_{Y \leqslant t} | X_{\mathbf{u}}] \right)^{2} \right] dF(t)}{\int_{\mathbb{R}} \operatorname{Var}(\mathbb{1}_{Y \leqslant t}) dF(t)} \\ &= \frac{\int_{\mathbb{R}} \mathbb{E}\left[\left(F(t) - F^{\mathbf{u}}(t) \right)^{2} \right] dF(t)}{\int_{\mathbb{R}} F(t) (1 - F(t)) dF(t)}. \end{split}$$ ## Sensitivity index Let us denote by \mathbb{F} the c.d.f. of the output of the code (it depends on the input variables). The universal index $S_{2,W_2}^{\mathbf{u}}(\mathbb{F})$ with respect to $X_{\mathbf{u}}=(X_i,i\in\mathbf{u})$ is : $$\frac{\int_{\mathcal{W}_2(\mathbb{R})^2} \mathbb{E}\left[\left(\mathbb{E}[\mathbb{1}_{\mathcal{W}_2(F_1,\mathbb{F})\leqslant \mathcal{W}_2(F_1,F_2)}] - \mathbb{E}[\mathbb{1}_{\mathcal{W}_2(F_1,\mathbb{F})\leqslant \mathcal{W}_2(F_1,F_2)}|X_u]\right)^2\right] d\mathbb{P}^{\otimes 2}(F_1,F_2)}{\int_{\mathcal{W}_2(\mathbb{R})^2} \mathrm{Var}(\mathbb{1}_{\mathcal{W}_2(F_1,\mathbb{F})\leqslant \mathcal{W}_2(F_1,F_2)}) d\mathbb{P}^{\otimes 2}(F_1,F_2)}$$ ## Estimation procedure In order to compute explicitly our estimator, it remains to compute terms of the form : $$W_2(\mu_{n,X_i},\mu_{n,X_i}).$$ Actually, such quantities are easy to compute since for two discrete measures supported on a same number of points and given by $$\nu_1 = \frac{1}{n} \sum_{k=1}^n \delta_{x_k}, \ \nu_2 = \frac{1}{n} \sum_{k=1}^n \delta_{y_k},$$ the Wasserstein distance between ν_1 and ν_2 simply writes $$W_2^2(\nu_1,\nu_2) = \frac{1}{n} \sum_{k=1}^n (x_{(k)} - y_{(k)})^2,$$ where $z_{(k)}$ is the k-th order statistics of z. ## Numerical study (I) Let X_1, X_2, X_3 be 3 independent random variables Bernoulli distributed with parameter p_1 , p_2 , and p_3 respectively. We consider the c.d.f.-valued code, the output of which is given by $$\mathbb{F}_{(X_1,X_2,X_3)}(t) = \frac{t}{1 + X_1 + X_2 + X_1 X_3} \mathbb{1}_{0 \leqslant t \leqslant 1 + X_1 + X_2 + X_1 X_3} + \mathbb{1}_{1 + X_1 + X_2 + X_1 X_3 \leqslant t},$$ so that $$\mathbb{F}_{(X_1,X_2,X_3)}^{-1}(v) = v\Big(1 + X_1 + X_2 + X_1X_3\Big).$$ ## Numerical study (II) Thus we consider the ideal code: $$f: \quad \mathcal{E} \quad \rightarrow \quad \mathcal{W}_2(\mathcal{E})$$ $$(X_1, X_2, X_3) \quad \mapsto \mu_{(X_1, X_2, X_3)} \sim \mathbb{F}_{(X_1, X_2, X_3)}$$ where $\mu_{(X_1,X_2,X_3)} \sim \mathcal{U}([0,1+X_1+X_2+X_1X_3])$ and its stochastic counterpart : $$f_s: \quad \mathcal{E} \times \mathcal{D} \quad \rightarrow \quad \mathbb{R}$$ $(X_1, X_2, X_3, D) \quad \mapsto f_s(X_1, X_2, X_3, D)$ where $f_s(X_1, X_2, X_3, D)$ is a realization of $\mu_{(X_1, X_2, X_3)}$. ## Numerical study (III) Hence, we do not assume that one may observe N realizations of \mathbb{F} associated to N initial realizations of (X_1,X_2,X_3) . Instead, for any of the N initial realizations of (X_1,X_2,X_3) , we assess n realizations of a uniform random variable on [0,T] where $T=1+X_1+X_2+X_1X_3$. We assume that only N=450 calls of the computer code f are allowed to estimate the indices $S_{2,W_2}^{\mathbf{u}}$ for $\mathbf{u}=\{1\}$, $\{2\}$, and $\{3\}$. The empirical c.d.f. based on the empirical measures $\mu_{i,n}$ for $i=1,\ldots,n$ are constructed with n=500 evaluations. We repeat the estimation procedure 200 times. ## Numerical study (IV) Figure – Boxplot of the mean square errors of the estimation of the Wasserstein indices $S_{2,W_2}^{\mathbf{u}}$. The indices with respect to $\mathbf{u}=\{1\}$, $\{2\}$, and $\{3\}$ are displayed from left to right. The results of the Pick-Freeze estimation procedure with N=64 are provided in the left side of each graphic. The results of the rank-based methodology with N=450 are provided in the right side of each graphic. Here, $p_1 = 1/3$, $p_2 = 2/3$, and $p_3 = 3/4$ ## Outline of the talk #### Introduction Framework Motivation #### Stochastic codes Our procedure Numerical study #### Second level sensitivity analysis Link with stochastic computer codes Numerical study ## Link with stochastic computer codes We denote by μ_i ($i=1,\ldots,p$) the distribution of the input X_i and we assume that each μ_i belongs to some parametric family \mathcal{P}_i of probability measures endowed with a probability measure \mathbb{P}_{μ_i} : $$\mathcal{P}_i := \{ \mu_{\theta}, \theta \in \Theta_i \subset \mathbb{R}^{d_i} \}$$ where Θ_i is endowed with a probability measure ν_{Θ_i} . Consider the stochastic mapping f_s from $\mathcal{P}_1 \times \ldots \times \mathcal{P}_p$ to \mathcal{Y} defined by $$f_s(\mu_1,\ldots,\mu_p)=f(X_1,\ldots,X_p)$$ where X_1, \ldots, X_p are independently drawn according to the distribution $\mu_1 \times \ldots \times \mu_p$. Hence f_s is a stochastic computer code from $\mathcal{P}_1 \times \ldots \times \mathcal{P}_p$ to \mathcal{Y} and we can perform sensitivity analysis using the indices defined previously. **ĕ**ŏoooo ## We associate the completie occurred defined on [O 113 by We consider the synthetic example defined on $[0,1]^3$ by $$f(X_1, X_2, X_3) = 2X_2e^{-2X_1} + X_3^2,$$ where X_i are independent uniform random variables. We are interested in the uncertainty in the support of the random variables X_1 , X_2 and X_3 . ്റ്റററ ## Numerical study - model We consider the synthetic example defined on $[0,1]^3$ by $$f(X_1, X_2, X_3) = 2X_2e^{-2X_1} + X_3^2,$$ where X_i are independent uniform random variables. We are interested in the uncertainty in the support of the random variables X_1 , X_2 and X_3 . #### Thus we assume - $X_i \sim \mu_i = \mathcal{U}([A_i, B_i])$; - $A_i \sim \mathcal{U}([0, 0.1])$; - $B_i \sim \mathcal{U}([0.9, 1])$. ## Numerical study - SA - For all i, we produce a N-sample $([A_{i,j}, B_{i,j}])_{j=1,...,N}$ of intervals $[A_i, B_i]$. - ② For all i and, for $1 \le j \le N$, we generate a n-sample $(X_{i,j,k})_{k=1,\ldots,n}$ of X_i , where $X_{i,j,k} \sim \mathcal{U}([A_{i,j},B_{i,j}])$. - **3** For $1 \le j \le N$, we compute the *n*-sample $(Y_{j,k})_{k=1,...,n}$ of the output using $$Y = f(X_1, X_2, X_3) = 2X_2e^{-2X_1} + X_3^2.$$ Thus we get a N-sample of the empirical measures of the distribution of the output Y given by : $$\mu_{j,n}= rac{1}{n}\sum_{k=1}^n\delta_{Y_{j,k}},\quad ext{for } j=1,\ldots,N.$$ **③** Finally, it remains to compute the indicators $S_{2,W_2}^{\mathbf{u}}$ and their means to get the Pick-Freeze estimators of $S_{2,W_2}^{\mathbf{u}}$, for $\mathbf{u}=\{1\},\{2\},\{3\},\{1,2\},\{1,3\},$ and $\{2,3\}$. We compute the estimators of $S_{2,W_2}^{\mathbf{u}}$ following the previous procedure with N=500 and n=500 and **1** Case 1 : $A_i \sim \mathcal{U}([0, 0.1])$ and $B_i \sim \mathcal{U}([0.9, 1])$, ② Case 2 : $A_i \sim \mathcal{U}([0, 0.45])$ and $B_i \sim \mathcal{U}([0.55, 1])$. | | () | () | {3} | (/) | (,) | (,) | |--------|---------|---------|----------|---------|---------|---------| | Case 1 | 0.07022 | 0.08791 | 0.09236 | 0.14467 | 0.21839 | 0.19066 | | Case 2 | 0.11587 | 0.06542 | 0.169529 | 0.22647 | 0.40848 | 0.34913 | ## Numerical study - Second illustration We run another simulations allowing for more variability on the upper bound related to the third input X_3 only : $$B_3 \sim \mathcal{U}([0.5, 1]).$$ | {1} | {2} | {3} | {1,2} | $\{1, 3\}$ | {2,3} | |---------|---------|---------|----------|------------|---------| | 0.01196 | 0.06069 | 0.56176 | -0.01723 | 0.63830 | 0.59434 | #### Reminder | | {1} | {2} | {3} | {1,2} | {1,3} | {2,3} | |--------------------|---------|---------|---------|---------|---------|---------| | $A_i \in [0, 0.1]$ | | | | | | | | $B_i \in [0.9, 1]$ | 0.07022 | 0.08791 | 0.09236 | 0.14467 | 0.21839 | 0.19066 | ## Numerical study - Third illustration We perform a classical GSA on the inputs rather than on the parameters of their distributions : we estimate the index $S_{2,CVM}^{\mathbf{u}}$ with a sample size $N=10^4$. | u | {1} | {2} | {3} | $\{1,2\}$ | {1,3} | {2,3} | |---------------------------------|---------|---------|---------|-----------|----------|---------| | $\hat{\mathcal{S}}_{2,CVM}^{u}$ | 0.13717 | 0.15317 | 0.33889 | 0.33405 | 0.468163 | 0.53536 | Reminder for $\hat{S}_{2,W_2}^{\mathbf{u}}$ | | | {2} | {3} | {1,2} | {1,3} | {2,3} | |--------------------|---------|---------|---------|---------|---------|---------| | $A_i \in [0, 0.1]$ | | | | | | | | $B_i \in [0.9, 1]$ | 0.07022 | 0.08791 | 0.09236 | 0.14467 | 0.21839 | 0.19066 |