Dynamic Kriging-assisted statistical calibration of material model

Ustim Khristenko Safran Tech

Journée de GST "Mécanique et Incertain" 19 October 2023

01

Problem statement: Material parameters identification using uniaxial tensile testing data

02 Approach: Dynamic Kriging-assisted statistical calibration

03 | Validation using a simplified easy-to compute model

04

Application to an industrial FE model

2 DST / Safran Tech / 19 October 2023

Uniaxial tensile testing

Uniaxial tensile testing

Physical test

FE simulation

4 DST / Safran Tech / 19 October 2023

Johnson-Cook material model

Johnson-Cook plasticity model:

$$\sigma(\varepsilon_p) = Y + H\varepsilon_p^n$$

Johnson-Cook failure model:

$$\varepsilon_{p,f} = D_1 + D_2 e^{D_3 \eta}$$

Model parameters vector:

 $\boldsymbol{\theta} = (Y, H, n, D_1, D_2, D_3)$

 $\begin{aligned} \sigma &- \text{stress} \\ \varepsilon_p &- \text{plastic strain} \\ \varepsilon_{p,f} &- \text{plastic strain at failure} \\ \eta &- \text{stress triaxiality} \end{aligned}$

5 DST / Safran Tech / 19 October 2023

Model parameters identification

Model parameters identification

Approximate the probability distribution of the material model parameters

- > Deterministic values: expectation or MAP estimator
- Correlation between parameters
- > Uncertainty propagation in other model

Approximate the probability distribution of the material model parameters

- > Deterministic values: expectation or MAP estimator
- Correlation between parameters
- > Uncertainty propagation in other model
- □ Sample using MCMC
 - > Direct approach is impossible (thousands of FE model evaluations)

Approximate the probability distribution of the material model parameters

- > Deterministic values: expectation or MAP estimator
- Correlation between parameters
- > Uncertainty propagation in other model
- □ Sample using MCMC
 - > Direct approach is impossible (thousands of FE model evaluations)
- □ Surrogate model for the posterior
 - > Dynamic Kriging: minimize the number of model evaluations
 - > Acquisition function exploring the high probability regions

10 DST / Safran Tech / 19 October 2023

Statistical calibration

Output vector and input parameters

• Output vector
$$\boldsymbol{y} := (\varepsilon_1, \dots, \varepsilon_{N_{nodes}}, \sigma_1, \dots, \sigma_{N_{nodes}})$$

lacksquare Experimental data : $oldsymbol{y}_k^*,\ k=1,\ldots,N_{obs}$

□ Model parameters vector: $\boldsymbol{\theta} = (Y, H, n, D_1, D_2, D_3)$

12 DST / Safran Tech / 19 October 2023

Probabilistic model for material response

Hypothesis: Output data (curve) ~ Gaussian process $~~oldsymbol{ ilde y}\sim \mathcal{N}(oldsymbol{ ilde y}^*,VV^ op)$

13 DST / Safran Tech / 19 October 2023

Posterior

Posterior

Posterior distribution:

$$p(\boldsymbol{\theta}|\boldsymbol{Y}^*) \propto e^{-\frac{1}{2}(\boldsymbol{f}(\boldsymbol{\theta}) - \boldsymbol{\bar{y}}^*)^\top \left(\boldsymbol{\Sigma} + \boldsymbol{V}\boldsymbol{V}^\top\right)^{-1}(\boldsymbol{f}(\boldsymbol{\theta}) - \boldsymbol{\bar{y}}^*)} \pi_0(\boldsymbol{\theta}).$$

Log-posterior:

$$J(\boldsymbol{\theta}) := -\frac{1}{2} \|\boldsymbol{f}(\boldsymbol{\theta}) - \boldsymbol{\bar{y}}^*\|_{(\Sigma + VV^{\top})^{-1}}^2 + \log \pi_0(\boldsymbol{\theta}) + const.$$

Surrogate posterior

Log-normal Kriging metamodel for the posterior : \hat{p}

$$\hat{p}(\boldsymbol{\theta}) = e^{\hat{J}(\boldsymbol{\theta})}$$

Gaussian process emulator of the log-posterior :

$$\hat{J}(\boldsymbol{\theta}) = \mu(\boldsymbol{\theta}) + \sigma(\boldsymbol{\theta})\xi, \qquad \xi \sim \mathcal{N}(0,1)$$
Kriging mean Kriging variance

Surrogate posterior

Log-normal Kriging metamodel for the posterior : \hat{p}

$$\hat{p}(\boldsymbol{\theta}) = e^{\hat{J}(\boldsymbol{\theta})}$$

Gaussian process emulator of the log-posterior :

$$\begin{split} \hat{J}(\pmb{\theta}) &= \mu(\pmb{\theta}) + \sigma(\pmb{\theta})\xi, \qquad \xi \sim \mathcal{N}(0,1) \\ \swarrow \\ \text{Kriging mean} \qquad \text{Kriging variance} \end{split}$$

Choice for the prediction:

$$\hat{p}_{mean}(\boldsymbol{\theta}) = e^{\mu(\boldsymbol{\theta}) + \frac{1}{2}\sigma^{2}(\boldsymbol{\theta})},$$
$$\hat{p}_{med}(\boldsymbol{\theta}) = e^{\mu(\boldsymbol{\theta})},$$
$$\hat{p}_{mode}(\boldsymbol{\theta}) = e^{\mu(\boldsymbol{\theta}) - \sigma^{2}(\boldsymbol{\theta})}.$$

17 DST / Safran Tech / 19 October 2023

Dynamic Kriging

 $N_{DOE} := N_{DOE} + 1$

Dynamic Kriging

Dynamic Kriging

20 DST / Safran Tech / 19 October 2023

Dynamic Kriging: Learning (score/acquisition) function

Ex.: Learning function = Expected Improvement function leads to EGO. **Aim is the MAP point.**

Our aim is to explore the whole distribution (or at least the high probability region).

Learning function choice – Shannon entropy (as measure of uncertainty) of the log-normal process at a point:

$$H(\boldsymbol{\theta}) = \mu(\boldsymbol{\theta}) + \log \sigma(\boldsymbol{\theta}) + const.$$

Acquisition of a new DOE point:

$$\boldsymbol{\theta}^{new} = \arg \max_{\boldsymbol{\theta}} H(\boldsymbol{\theta}).$$

Dynamic Kriging: Stopping criterion

Validation metric (alternative to Q2) adapted for probability distributions.

Leave-One-Out version of (normalized) Jensen-Shannon divergence (JSD):

$$D_{JS}(p,\hat{p}) = 1 - \frac{H_P + H_{\hat{P}}}{2H_M}$$

$$H_{P} = -\frac{1}{N_{DOE}} \sum_{i=1}^{N_{DOE}} P_{i} \log P_{i}, \quad H_{\hat{P}} = -\frac{1}{N_{DOE}} \sum_{i=1}^{N_{DOE}} \hat{P}_{i} \log \hat{P}_{i} \qquad H_{M} = -\frac{1}{N_{DOE}} \sum_{i=1}^{N_{DOE}} M_{i} \log M_{i}$$
$$P_{i} = \frac{p(\boldsymbol{\theta}_{i})}{\sum_{i=1}^{N_{DOE}} p(\boldsymbol{\theta}_{i})}, \qquad \hat{P}_{i} = \frac{\hat{p}_{loo}(\boldsymbol{\theta}_{i})}{\sum_{i=1}^{N_{DOE}} \hat{p}_{loo}(\boldsymbol{\theta}_{i})}, \qquad M_{i} = \frac{1}{2} (P_{i} + \hat{P}_{i})$$

Validation using a simplified model

Easy-to-compute analytical model

DST / Safran Tech / 19 October 2023 24

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

0.10

Dynamic Kriging procedure

25 DST / Safran Tech / 19 October 2023

True posterior vs. Surrogate posterior

26

DST / Safran Tech / 19 October 2023

This document and the information therein are the property of Safran. They must not be copied or communicated to a third party without the prior written authorization of Safran

Initial DOE (MaxPro) of size = 5 **Dynamically added points**

* Reference values = Ground truth MAP

SAFRAN

MAP estimator

Parameters	Lower bound	Upper bound	Surrogate MAP
Yield stress <i>E</i> / <i>E</i> ^{ref}	0.833	1.111	0.999
Yield stress Y/Y ^{ref}	0.623	1.246	1.009
Hardening modulus <i>H</i> / <i>H</i> ^{ref}	0.647	2.16	1.03
Hardening exponent n/n^{ref}	0.4	2	1.04
Failure parameter D_1/D_1^{ref}	0.566	1.132	0.997

* Reference values = Ground truth MAP

Material response samples

True posterior: 50 MCMC samples, MAP, 10 data curves

Surrogate posterior: 50 MCMC samples, MAP, 10 data curves

Application to the FE model

Dynamic Kriging for FE model

- ➢ FE model (OpenRadioss):
 - ~1000 nodes
 - Runtime ~ 3 min
- ➢ 6 parameters Johnson—Cook material model:
 - 3 plastic parameters (Yield stress, Hardening modulus and exponent)
 - 3 failure parameters (D1, D2, D3)

 $\boldsymbol{\theta} = (Y, H, n, D_1, D_2, D_3)$

Surrogate posterior

- 6 parameters Johnson—Cook material model.
- Uniform prior (heuristic).

Parameters	Lower bound	Upper bound	Surrogate MAP
Yield stress Y/Y ^{ref}	0.635	1.27	1.009
Hardening modulus <i>H</i> / <i>H</i> ^{ref}	0.9	1.8	1.425
Hardening exponent n/n^{ref}	0.625	3.125	1.55
Failure parameter D_1/D_1^{ref}	0.113	1.13	0.91
Failure parameter D_2/D_2^{ref}	0.55	5.5	0.716
Failure parameter $D_3 / D_3^{ref} $	-1.7	0	-1.14

* Reference = Fixed nominal parameters values

Initial DOE size = 6 Dynamically added points

31 DST / Safran Tech / 19 October 2023

Material response samples

Reference (Gaussian response model): **50 samples**, **10 data curves**

Surrogate: 50 MCMC samples, MAP, 10 data curves

Conclusion & Perspectives

- □ Surrogate posterior distribution
 - > Dynamic DOE procedure
 - > Entropy-based acquisition function to explore high probability region
 - > Validation metric based on Jensen-Shannon divergence
 - Validation using a simplified model
- □ Uncertainty quantification of the material model parameters
 - MAP estimator
 - Correlation between parameters
 - MCMC sampling from the surrogate
- Perspectives:
 - Model bias identification
 - Error analysis

POWERED BY TRUST

