

Reliability Based Optimisation of Aeronautical Composite Structures Under Aeroelastic Constraints

Roger BALLESTER CLARET

PhD student, first year ONERA, DAAA/MSAE¹ and DMAS/MC2² LISN-CNRS³

<u>Thesis director:</u> Didier LUCOR³ <u>ONERA supervisors:</u> Nicolò FABBIANE¹, Christian FAGIANO² and Cédric JULIEN² <u>Thesis funding:</u> ONERA

> GST Mécanique et Incertain 19 octobre 2023 - ISAE-SUPAERO

Presentation Table of contents

Problem introduction

Multi-scale design space for composite materials

Composite structures:

- Series of fibres (carbon, glass, Kevlar, etc.) being held \geq together by a matrix (epoxy, polyester, PP, etc.)
- Disposed into fine unidirectional layers \rightarrow plies \geq
- N number of plies are stacked to form a laminate with a \geq defined stacking sequence $(\theta_1, \dots, \theta_N)$
- \geq Different zones can be defined within the same problem

¹ Irisarri et al. (2011) Composite structures.

Problem introduction

Multi-scale design space for composite materials

Laminate stacking sequences:

Large number of degrees of freedom:

- $A(\theta_1, \dots, \theta_N), B(\theta_1, \dots, \theta_N) \text{ and } D(\theta_1, \dots, \theta_N)$
- Not a constant number of degrees of freedom

$$\min y = f(\theta_1, \dots, \theta_N)$$

Usually, many local minimal values can be found in optimisation problems

X

100 -100

2

NBM 0.5

-100

Problem introduction

Multi-scale design space for composite materials

¹ Miki Mirisadri Setgely a (2001 M). C 1999 Sitel At Loutines

5

² Irisarri et al. (2009) Composite Science and Technology.

THE ERENCH AEROSPACE LAR

Large number of degrees of freedom:

 $A(\theta_1, \dots, \theta_N), B(\theta_1, \dots, \theta_N) \text{ and } D(\theta_1, \dots, \theta_N)$

- Not a constant number of degrees of freedom $\min y = f(\theta_1, \dots, \theta_N)$
- Usually, many local minimal values can be found in optimisation problems

PARIS-SACLAY

Lamination Parameters (material homogenisation):

- Constant number of variables at each zone (13): $A(v_1^A, v_2^A, v_3^A, v_4^A)$, $B(v_1^B, v_2^B, v_3^B, v_4^B)$ and $D(v_1^D, v_2^D, v_3^D, v_4^D)$ $\min y = f(v, N)$
- "Convex/smooth" optimisation space

No exact solution to the inverse problem

Compatibility conditions

 \geq

R. Ballester – RBDO of Composite Structures under Aeroelastic Constraints

Problem introduction

RÉPUBLIQUE FRANCAISE ONERA

THE ERENCH AEROSPACE LAB

univei

PARIS-SACLAY

Multi-scale design space for composite materials

6

Problem introduction Methodology development

- > Aeroelastic models can be computationally expensive
- > Possible big number of design variables doesn't allow for an overall design space computation
- > Constrained Optimisation Process (COP) 1 >

 $\min f(v, N)$ s.t.: $g_j(v, N) \le 0$ s.t. Compatibility Conditions

> Error in fiber direction (Θ) while stacking composite plies introduces a reliability based analysis on the constraints:

 $\min f(v(\mu_{\Theta}), N)$ s.t.: $\mathbb{P}(g_j(v(\Theta), N) < 0) \le \mathbb{P}^{max}$ s.t. Compatibility Conditions

> Need for an inverse problem solver that can address the reliability based design

Multi Step Optimisation Strategy:

RÉPUBLIQUE FRANÇAISE

- 1. Global design space exploration via Efficient Global Optimisation (EGO) with deterministic approach
- 2. Genetic Algorithm (GA) optimisation with Reliability Based Design Optimisation (RBDO) approach for inverse problem

¹ Jones et al. (1998) Global Optim.

Multi Step-Optimisation Strategy Workflow proposed

PARIS-SACLAY

Multi Step Optimisation Strategy:

THE ERENCH AEROSPACE LAB

- 1. Global design space exploration via Efficient Global Optimisation (EGO) with deterministic approach
- 2. Genetic Algorithm (GA) optimisation with Reliability Based Design Optimisation (RBDO) approach for inverse problem

R. Ballester – RBDO of Composite Structures under Aeroelastic Constraints

¹ SMT: Surrogate Modeling Toolbox

Efficient Global Optimisation *Acquisition Functions*

$$\begin{cases} X = \{x_1, x_2, \dots, x_n\} \\ Y = \{y_1, y_2, \dots, y_n\} \end{cases} \to f_{min} = min\{y_1, y_2, \dots, y_n\}$$

Expected Improvement ¹ (EI):

 $\mathbb{E}[I(x)] = \mathbb{E}[(f_{min} - Y(x), 0)]$

- \rightarrow Depends on the surrogate model of the objective function
- Probability of Feasibility (PoF):

$$PoF = \mathbb{P}(g_{const.}(x) < 0)$$

 \rightarrow Depends on the surrogate models of the constraints

objective =
$$PoF * \mathbb{E}[I(x)]$$

Reliability Based Design Optimisation *Methodology development*

Composite tailoring problem using the identified surrogate models $(\tilde{f}, \tilde{g_j})$: finding a stacking sequence $(\theta_1, ..., \theta_N)$:

 $\min \tilde{f}(v(\mu_{\Theta}), N)$ s.t.: $\mathbb{P}(\tilde{g}_{j}(v(\Theta), N) < 0) \leq \mathbb{P}^{max}$ s.t. Design Rules

- Solved via Genetic Algorithm (GA) given the numerous local minima within the solution space and non-continuous design space
- > Monte Carlo analysis used to evaluate the probability of violating a constraint
- > Design rules can be imposed by the manufacturer and must be taken into consideration within the inverse problem
 - Symmetry

ONERA

THE ERENCH AEROSPACE LAB

- Balanced composite
- · Given orientation for the outer plies

PARIS-SACLAY

• etc.

RÉPUBLIQUE

¹ Scarth & Cooper (2018) Composite Structures J.

Application case: Aeroelastic Composite Plate ¹ Problem presentation

- Analysis via NASTRAN (DLM)¹
- > Two design variables (V_D^1, V_D^3)
- > **<u>Constraint</u>**: Fixed fluid velocity (V_{des}) and lift force (L)
 - $V_{des} = 105 \, m/s$
 - Constant lift $L = 1/2 \rho V_{des}^2 SC_l$
 - Free AoA (α)
 - → **Output**: Tip displacement (mm)

 $\mathbb{P}(g_{disp.}(V_D^1, V_D^3) < 0) \le \mathbb{P}^{max}$

- > **<u>Objective</u>**: Fixed fluid velocity (V_{des}) + vertical gust (V_{gust})
 - $V_{gust} = 1\% * V_{des} = 1,05 \, m/s$
 - Sinusoidal waveform with a frequency of 20Hz
 - → **Output**: Maximum bending moment at base (Nm)

 $\min(M_x(V_D^1,V_D^3))$

Application case: Aeroelastic Composite Plate Results – Step 1: EGO exploration

Application case: Aeroelastic Composite Plate *Results – Step 1: EGO exploration*

Identified Surrogate Model

Reference Model

Wind Gust Bending Moment

Application case: Aeroelastic Composite Plate Results – Final surrogate model vs. Real response

¹ Irisarri et al. (2009) Composite Science and Technology.

Application case: Aeroelastic Composite Plate RBDO – Results

universi

THE ERENCH AEROSPACE LAB

PARIS-SACLAY

Application case: Aeroelastic Composite Plate *Conclusions*

EGO:

- Active exploration (deterministic) of the design space
- Efficient construction of a surrogate model for RBDO

RBDO:

- Optimal solution respecting failure probability
- The surrogate models permits the use of Monte Carlo analysis

→ Efficient Multi-Step RBDO process

THE ERENCH AEROSPACE LAB

PARIS-SACLAY

Next steps *Towards 'real" aeronautical studies*

Next step: Multi-zone + ply orientation freedom

> Augment the number of design variables in the plate design $(v_1^D, v_2^D, v_3^D, v_4^D, N)_p$

Further steps: CARACAL¹

- Conception aéroélastique pour la réduction de charge à la rafale
- Free fiber direction + multi-zone design (10 zones total)
 - \rightarrow Up to 40 design variables
- Multi-fidelity aerodynamic problem simulation

Thank you for your attention

Roger BALLESTER CLARET roger.ballester_claret@onera.fr ONERA, DAAA/MSAE - DMAS/MC2 LISN-CNRS

> GST Mécanique et Incertain 19 octobre 2023 - ISAE-SUPAERO

ANNEX:

Fraternité

Roger BALLESTER CLARET roger.ballester_claret@onera.fr ONERA, DAAA/MSAE - DMAS/MC2 LISN-CNRS

> GST Mécanique et Incertain 19 octobre 2023 - ISAE-SUPAERO

Context and objectives *Bibliographical work*

- Reliability-based design optimization of composite laminates for aeroelastic applications (Coelho 2023; Sharifi 2023)
- > Ply orientations uncertainty has an influence on some instabilities:
 - Buckling (Conceicao et al, 2017; Wang et al., 2017; Pagani and Sanchez, 2022)
 - Flutter velocity (Scarth et al., 2014, Nitschke et al. 2019)
- Efficient global optimisation:
 - EGO (Jones, D. R., Schonlau, M., & Welch, W. J. 1998)
 - Expected Improvement (Ginsbourger et al. 2010)
 - Constrained EI (Jiao et al. 2018)

Inverse problem Design space

• Simplification of the LP problems to a 2 dimension space:

- Symmetrical laminate condition $(\theta_1, \theta_2, ..., \theta_n, \theta_n, ..., \theta_2, \theta_1)$
- − Study cases \rightarrow Pure bending/flexural cases
- − Balanced laminate condition: $\forall \theta_N \rightarrow \exists \theta_N$
- > Only v_1^D and v_3^D are left after the simplifications
- > Angles ±[0°, 15°, 30°, 45°, 60°, 75°, 90°]
- $v_{[1,3]}^D$ Definition:

$$v_{[1,3]}^{D} = \frac{12}{t^3} \int_{-h/z}^{h/2} [\cos(2\theta_k), \cos(4\theta_k)] z^2 dz$$

$$v_{[1,3]}^{D} = \frac{12}{t^{3}} \sum_{\kappa}^{N} \frac{z_{k}^{3} - z_{k-1}^{3}}{3} [\cos(2\theta_{k}), \cos(4\theta_{k})]$$

Design space limits:

$$v_3^D \le (v_1^D)^2 - 1$$

 $-1 \le v_{[1,3]}^D \le 1$

 $R_r = (0^0, \dots, 45^0)$ $R_l = (45^0, \dots, 90^0)$

 $-(v_1^B, v_2^B, v_3^B, v_4^B)$

 $(v_1^D, v_2^D, v_3^D, v_4^D)$

Inverse problem Failure probability analysis

- Proposed failure probability analysis methodology: First Order Reliability Method (FORM)
 - The entire calculation space (Gaussian distributions) is normalised
 - The limit state function is linearised on the nearest point to the mean values

Inverse problem Failure probability analysis

- Proposed failure probability analysis methodology: First Order Reliability Method (FORM)
 - The entire calculation space (Gaussian distributions) is normalised
 - The limit state function is linearised on the nearest point to the mean values
- Quick and easy calculation
- Best approximation when failure probability is low
- Might underestimate failure probability if function is strongly convex

We need $\mu_{v_1^D}$, $\mu_{v_3^D}$, $\sigma_{v_1^D}$, $\sigma_{v_3^D}$ and $corr(v_1^D, v_3^D)$ values to launch the algorithm

Extraction of LPs distributions from reduced Monte Carlo analysis:

- Easy computation but high cost
- Fourier Chaos Expansion (FCE):
 - Method to compute the expectation of trigonometric functions

Study cases and results

RÉPUBLIQUE FRANCAISE ONERA

THE ERENCH AEROSPACE LAB

PARIS-SACLAY

Limitations and perspectives

Limitations:

- Limited design space (no thickness)
- Convergence issues due to: \geq
 - Inverse problem discrepancy from the expected LPs
 - No sensitivity on the failure probability when optimizer travels into failure domain
- Error introduced by the surrogate-model bigger than expected failure probability ≻

Perspectives:

- Increase number of design variables: ≻
 - Introduction of composite thickness ٠
 - Introduction of multiple design zones
 - Towards more complex aeronautical problems
- Update surrogate modeling strategy \geq
 - Adaptative kriging strategies

-1.00-0.75-0.50-0.250.00

20 0.25

1.00

0.500.250.00

-0.25-0.50

-0.751.00 - 1.00

Study cases and results

RÉPUBLIQUE FRANÇAISE

Liberté Égalité Praternité

Limitations and perspectives

Limitations:

- Limited design space (no thickness)
- Convergence issues due to:
 - Inverse problem discrepancy from the expected LPs
 - · No sensitivity on the failure probability when optimizer travels into failure domain
- Error introduced by the surrogate-model bigger than expected failure probability

Precedent studies – L.Coelho *Reliability Based Design Optimisation (RBDO)*

¹ Scarth & Cooper (2018) Composite Structures J.

Composite plate immersed in an airflow *Problem presentation*

Three different analysis via NASTRAN (DLM)¹

- > **<u>Analysis 1</u>**: Fixed fluid velocity (V_{des}) and lift force (L)
 - \rightarrow **Output**: Tip displacement (mm) + strain(ϵ)
- > Analysis 2: Flutter analysis
 - → **Output**: Limit flutter speed (m/s)
- > **<u>Analysis 3</u>**: Fixed fluid velocity (V_{des}) + vertical gust (V_{gust})
 - → **Output**: Maximum bending moment at base (Nm)

Composite plate immersed in an airflow *RBDO – Results-OLD*

	μ_{V1}	μ _{V3}	F . P .
S1	0,2663	0,1587	0,732
S 2	0,2645	0,1538	0,623
S 3	0,2621	0,1567	0,445

Optimum value at: $(V_D^1, V_D^3) = (0.2652, 0.1565)$

Reliability Based Optimisation of Aeronautical Composite Structures Under Aeroelastic Constraints 30

Composite plate immersed in an airflow *RBDO – Results - OLD*

 μ_{V1}

ONERA

THE FRENCH AEROSPACE LAB

RÉPUBLIQUE FRANÇAISE

Liberté Égyilité Preternite

S1	0,2663	0,1587	0,732
<mark>S</mark> 2	0,2645	0,1538	0,623
S 3	0,2621	0,1567	0,445
S1	0,2456	0,1661	0,0005
S 2	0,2538	0,1604	0,0001
S 3	0,2505	0,1654	0

universite

PARIS-SACLAY

Optimum value at: $(V_D^1, V_D^3) = (0.2652, 0.1565)$

Reliability Based Optimisation of Aeronautical Composite Structures Under Aeroelastic Constraints 31