

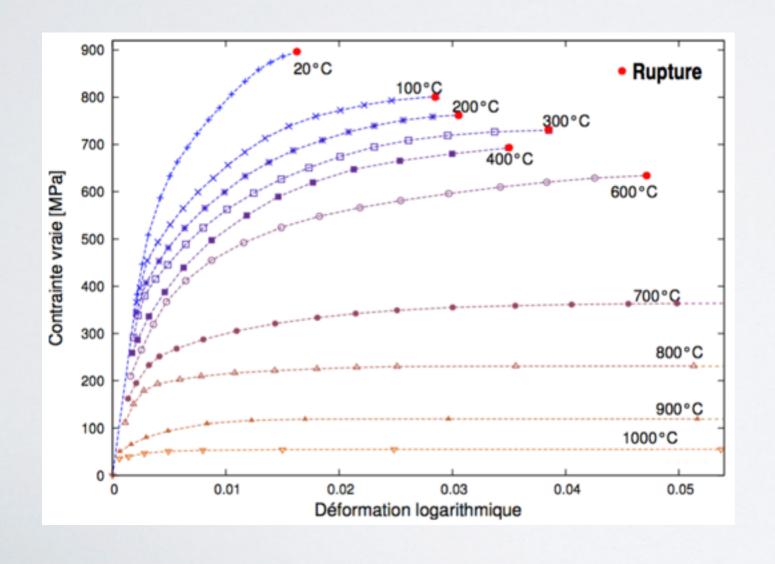
LES LOIS DE COMPORTEMENT SONT ELLES VOUÉES À DISPARAÎTRE ?

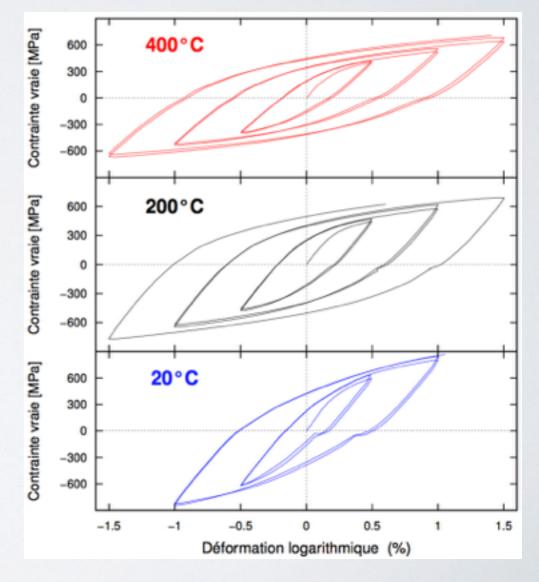
Michel CORET, Adrien LEYGUE, Julien RÉTHORÉ Laurent STAINIER, Erwan VERRON

SNS, le 23 Mars 2017, Paris la défense

PLAN

- · Lois de comportement, les habitudes...
- Limitations/objectifs
- · Un changement de paradigme
- Mesurer des contraintes


RAPPEL DES OBJECTIFS


- Obtenir les déformations et contraintes à l'intérieur d'une structure
- · Appliquer des critères de dimensionnement
- Par exemple : obtenir les contraintes résiduelles induite par le soudage

La loi de comportement en elle même n'est pas un objectif.

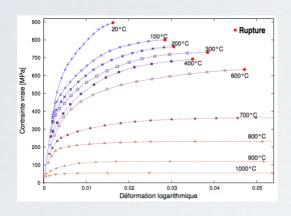
Essais

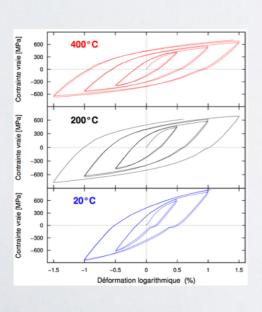
Modèle

$$\sigma = \sigma^H Id + \tilde{\sigma}$$

$$\varepsilon = \varepsilon^{th} + \varepsilon^e + \varepsilon^p$$

$$\begin{cases} \sigma^{H} = \frac{1}{3}tr(\sigma) = Ktr(\varepsilon - \varepsilon^{th}) \\ \varepsilon^{th} = \alpha \left(T - T^{ref}\right)Id \\ \tilde{\sigma} = \sigma - \sigma^{H}Id = 2\mu(\tilde{\varepsilon} - \varepsilon^{p}) \\ R = R(p) \\ X = X(p, \varepsilon^{p}) \end{cases}$$

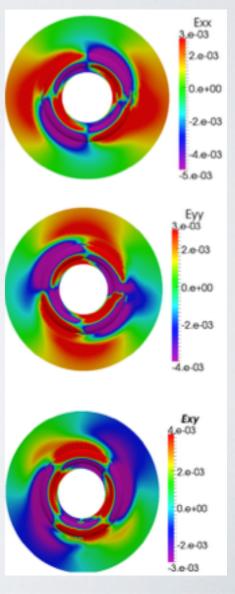

$$\begin{cases} X = \frac{2}{3} \cdot C \cdot \alpha \\ \dot{\alpha} = \dot{\varepsilon}^p - \gamma \cdot \alpha \cdot \dot{p} \end{cases}$$

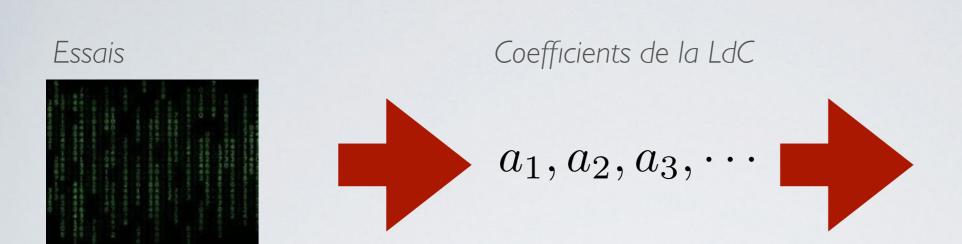

Identification

Température [°C]	R ₀ (Pa)	k	γ	C _∞ (Pa)	E (Pa)
20	4,931 e8	31,45	228,23	3,145 e9	1,788 e11
100	4,161 e8	25,62	157,37	2,402 e9	1,727 e11
200	3,923 e8	33,30	129,03	1,491 e9	1,651 e11
300	3,709 e8	16,13	114,10	2,618 e9	1,576 e11
400	2,839 e8	37,75	139,90	1,510 e9	1,500 e11
600	2,618 e8	22,55	144,02	2,255 e9	1,348 e11
700	2,008 e8	18,45	147,89	1,267 e9	1,209 e11
800	1,552 e8	14,19	275,10	1,419 e9	1,111 e11
900	5,647 e7	12,44	244,71	1,244 e9	0,799 e11
1000	3,629 e7	8,39	381,39	0,839 e9	0,593 e11

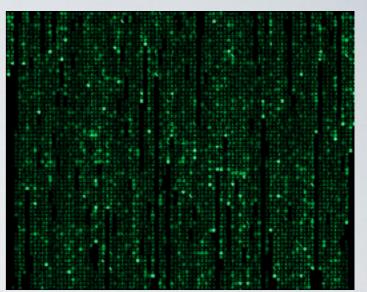
G. Beaurin

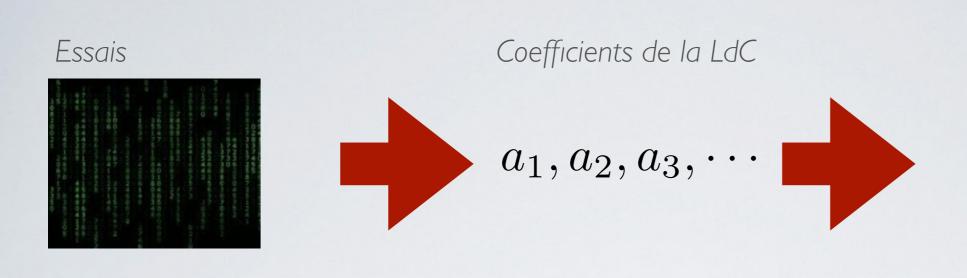
· La Loi de Comportement est un filtre ...

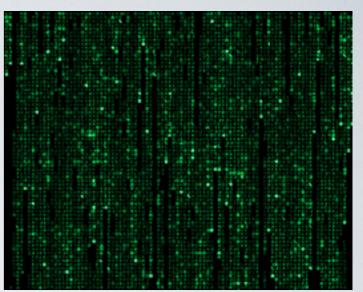



 $E, k, \gamma, C_{\infty}, \cdots$

· ...qui sert ensuite à générer des données


 $E, k, \gamma, C_{\infty}, \cdots$



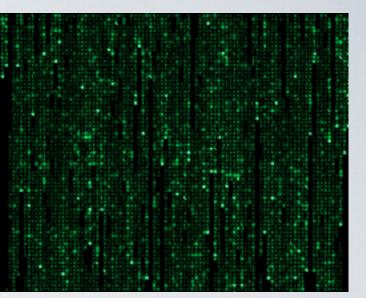

Simulations

- Limitations de la LdC
 - · Choix de la LdC primordial
 - Quelle est la validité du calcul vis à vis des données matériaux de départ ?

Simulations

• Limitations de la LdC :

- des LdC de plus en plus complexes à écrire, à identifier et longues à mettre en oeuvre...
 (combien sont utilisées ?)
- on ne sais pas toujours les écrire dans le cadre de phénomènes couplés.


Coefficients de la LdC

 a_1, a_2, a_3, \cdots

Simulations

 Exemples de coefficients pour des lois récentes (modèles polycristallins multiphasés)

A. Shahba, S. Chosh / International Journal of Plasticity 87 (2016) 48-68

61

Table 3

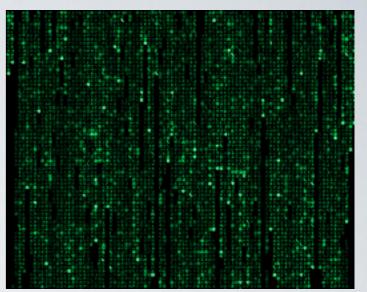
Elastic stiffness components at room temperature, experimentally measured in Shade (2015), and their reducing gradients with temperature reported in Ogi et al. (2004).

Parameter	Unit	lj = 11	IJ = 12	JJ = 13	ij = 33	<i>lj</i> = 55
Cil	GPa	164.7	82.5	61.8	175.2	48.5
0C)	MPa/K	48	8.9	21	21	21.9

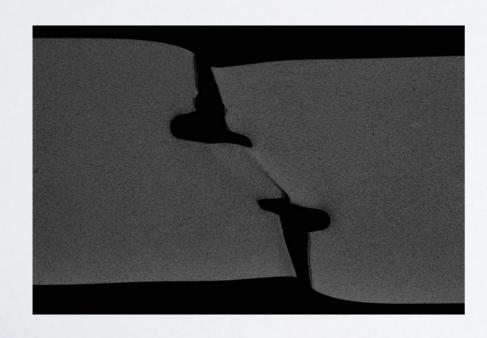
Table 4
Calibrated crystal plasticity parameters for the unified model for different slip systems.

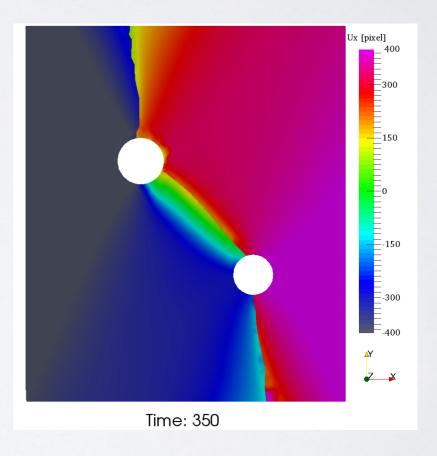
Parameters	Unit	(a)- basal	(a)- prismatic	(a)- pyramidal	(c+a)− pyramida		
Q _{ref}	J	2.1 × 10 ⁻¹⁹	2.2 × 10 ⁻¹⁹	3.0×10^{-19}	2.6×10^{-19}		
Paint	b"	20	20	20	20		
No.	MPa	5.0	5.0	5.0	5.0		
Carlo	-	0.8	0.62	0.7	0.5		
Clar	-	0.7	0.7	0.1	0.04		
C ^a	-	8.0	8.0	8.0	8.0		
Creati	µ71 -1	150	230	500	500		
Connih	-	10	10	10	10		
c5	J	2.3×10^{-20}	3.7×10^{-20}	1.8×10^{-20}	0.9×10^{-39}		
p_0^2	-	1.6	1.6	1.6	1.6		

Table 5
Calibrated crystal plasticity parameters for the phenomenological model for different slip systems

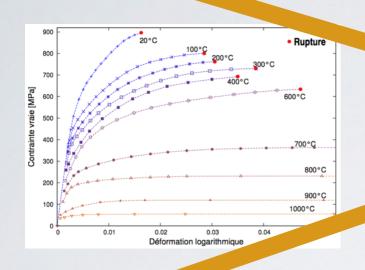

Parameters	rs Unit (g)-		(a) - prismatic	(a)— pyramidal	(c+a)- pyramidal		
45.	MPa	230	205	500	610		
10	g-1	0.003	0.003	0.003	0.003		
hand.	MPa	250	250	1200	2000		
m	-	0.019	0.019	0.019	0.019		
P ^{er}	-	0.02	0.02	0.02	0.02		
n*	-	0.3	0.3	0.3	0.3		
2"	MPa	1600	1600	1600	1800		

48	X. Long et al. / International Journal of Plasticity 90 (2017) 44-65																							
Table 2																								
Interact	ion m	atrix	н																					
n/m	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24
1	С	C	C	c	1	1	C	-	C	-1	C	-1	1	С	1	1	1	1	-1	С	С	7	-1	1
2	C	C	C	C	I	1	1	C	1	C	1	C	C	1	1	1	1	1	C		1	C	II.	1
3	C	C	C	C	C	1	1	I	C	I	C	I	I	1	1	C	1	C	I		II.	1	C	1
4	C	C	C	C	1	c	1	1	1	C	1	C	1	1	C	1	C	1	1	ž.	1	I	i	C
5	I		C	1	C	C	C	C	C	1			I	C	I	C	C					C		1
6			1	C	C	C	C	C		C	1		C	1	C		1	C			C	1		1
7	C	1	1	1	C	C	C	C	1	I	C	1	1	C	I	C	1	1	C		I	I	II.	C
8	I	C	1	1	C	C	C	C	1	I	1	C	C	1	C	1	1		II.	C	II.	1	C	1
9	C		C	1	C	1	1	I	C	C	C	C	1	1	1	C	1		I	C	C	1	II.	1
10	I	C	I	C	1	C	1	I	C	C	C	C	I	1	C	1	1	1	C		I	C		I
11	C		C	1	1	I	C	1	C	C	C	C	1	C	I	1	1	C	I		II.	I	C	I
12	I	C	I	C	ı	ı	1	C	C	C	C	C	C	1	ı		C		II.	1		I		C
13	I	C	I	1	ı	C	1	C	1	I	1	C	C	C	C	C	1	C	II.		C	1		1
14	C	I	1	1	C	I	C	I	I	I	C	I	C	C	C	C	C	ı	I	I	i .	C	ı	1
15	I	1	1	C	I	C	I	C	1	C	1	I	C	C	C	C	1	1	I	C	I	I	C	I
16	I		C	1	C	I	C	1	C	I	1	1	C	C	C	C	1		C	1	1	1	1	C
17	I		I	C	C	ı	1		,	I		C	1	C	ı	1	C	C	C	C	1	C		C
18	I		C			C		1		ı	C		C	1	ı	1	C	C	C	C	C	ı	C	1
19	1	C	1	1	1	1	C	I	1	C	1	1	1	1	I	C	C	C	C	C	I	C	1	C
20	C	I	I	1	ı	I	1	C	C	I	1	-	I	1	C	1	C	C	C	C	C	I.	C	I.
21	C	1	1	1	I.	c	1	1	C	I.	1	1	C	1	I	1	1	C	I.	C	C	C	C	c
22	1	C	1	1	C	4	1	1	4	C	1	- 1	1	C	4		C	1	C,	1	C,	C	C.	C
23	1	1	c	1	4	4	1	C	4	1	C	1	1	1	C	ı	ı	c	ı	C	C	c	C	C
24	I	I	I	C	I	I	C	1	ı	I	I	C	I	I	ı	C	C	ı	C	1	C	C	C	C

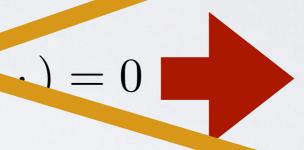

$$\Psi(\Sigma,T,z^n) = \frac{1}{2}\Sigma: S_A: \Sigma + \frac{1}{2}\Sigma: \Delta S: \Sigma \sum_n z^n - \frac{1}{2}\sum_{n,m} H^{nm}z^nz^m + \Sigma: \sum_n \epsilon^n z^n - \beta(T-T_0)\sum_n z^n$$
 (10)

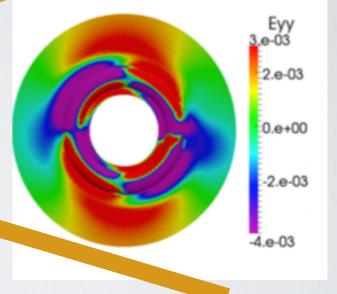


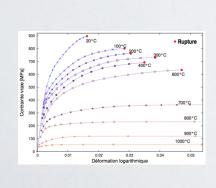
Simulations

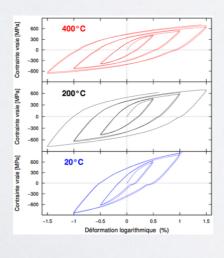


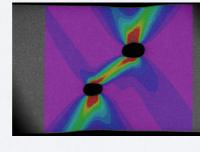
- · Identification à partir de corrélation d'images ?
 - Pas bcp mieux...

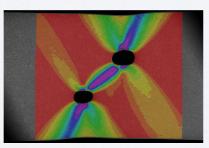


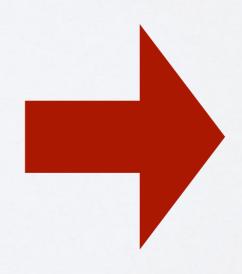


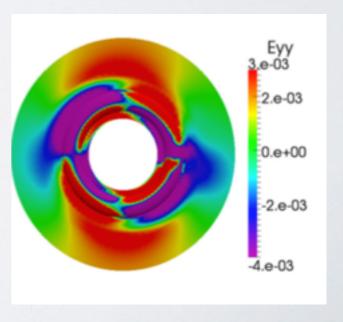

... je ne connais pas de loi valide jusqu'à la rupture.



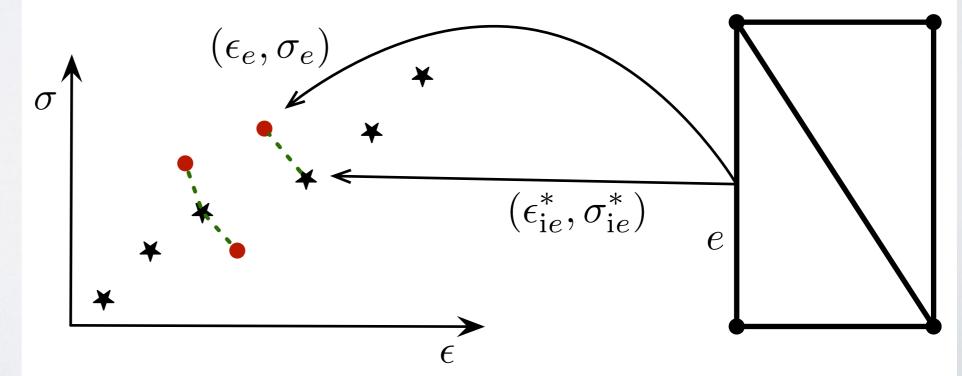








Data-Driven


• Proposition de Kirchdoerfer & Ortiz 2016 (élasticité) :

Pour chaque élément e d'une structure, on cherche un couple $(\varepsilon_e, \sigma_e)$ vérifiant **exactement** l'équilibre et la compatibilité, et s'approchant au mieux d'une **collection** d'états matériau **connus** $(\varepsilon_i^*, \sigma_i^*)$.

$$Sol. = Arg \underset{\varepsilon_e, \sigma_e, ie}{Min} \frac{1}{2} \sum_{e} w_e \| (\varepsilon_e - \varepsilon_{ie}^*, \sigma_e - \sigma_{ie}^*) \|_C^2$$
 (1)

- Proposition de Kirchdoerfer & Ortiz 2016 (élasticité) :
 - I. Initialisation aléatoire d'état matériau dans une barre
 - 2. Construction de champs $(\varepsilon_e, \sigma_e)$ CA et SA
 - 3. Minimisation de la fonctionnelle (1)

4. On réaffecte des états matériaux et on boucle à partir du point 2.

- Proposition de Kirchdoerfer & Ortiz 2016 (élasticité) :
 - Hypothèse de départ : « Je dispose d'une collection (importante) d'états matériau admissibles » $(\varepsilon_i^*, \sigma_i^*)$
 - Mais habituellement, je ne mesure que les champs de déformations et les résultantes...(essais complexes qui donnent des collections importantes)

MESURER DES CONTRAINTES

• Proposition de Leygue et al. : Pourquoi pas!

Supposons connu:

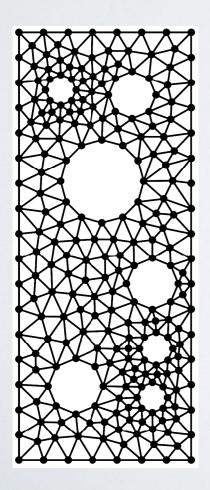
- · les déplacements nodaux
- · Les forces et déplacements imposés
- · Le matériau est homogène

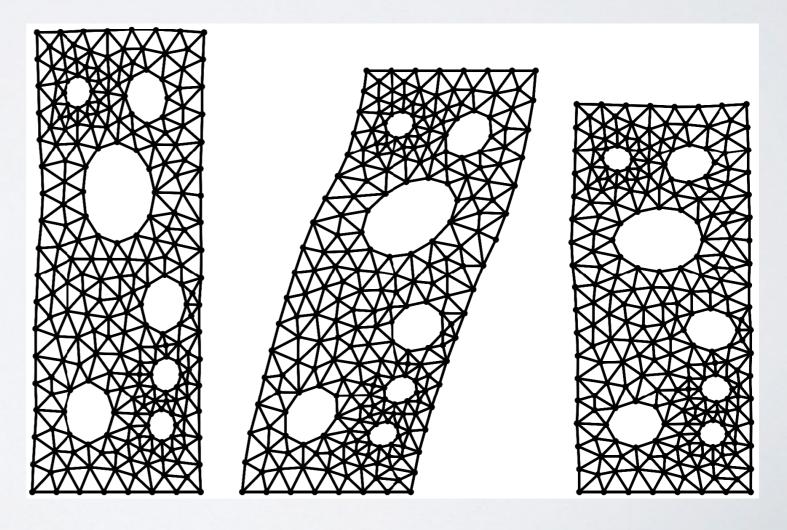
MESURER DES CONTRAINTES

• Méthode inspirée de Kirchdoerfer & Ortiz :

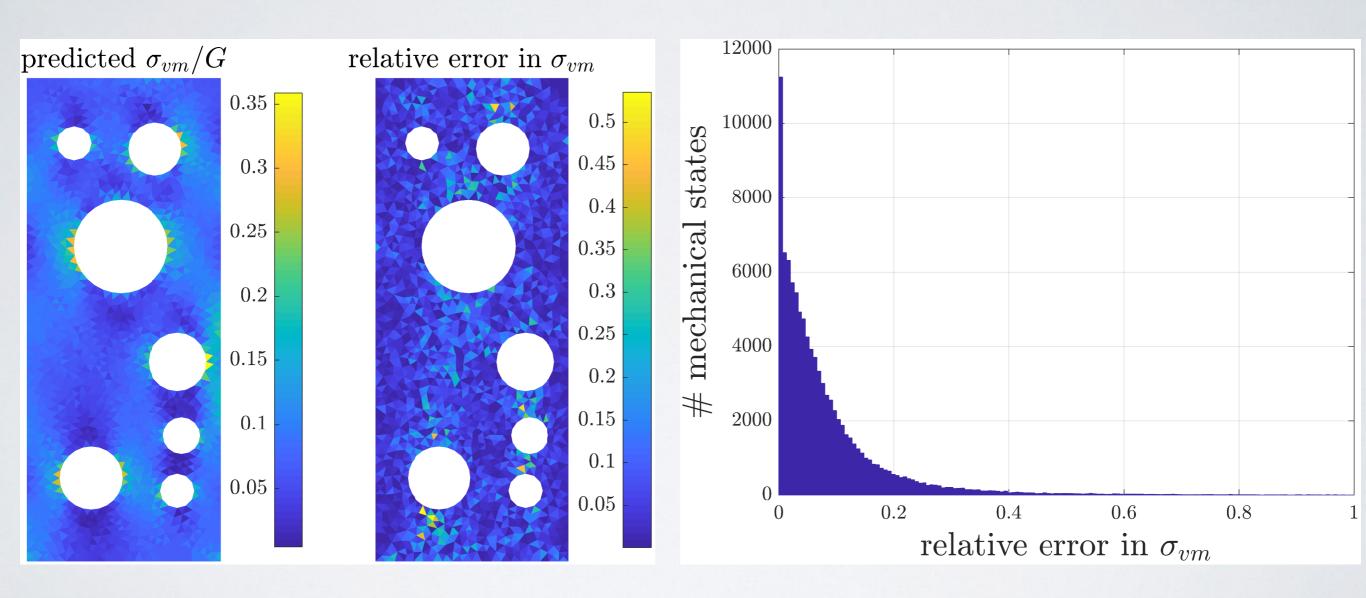
On cherche pour un ensemble de configurations x

- Les états matériaux $(\varepsilon_{ie^X}^*, \sigma_{ie^X}^*)$
- · Qui vérifient l'équilibre

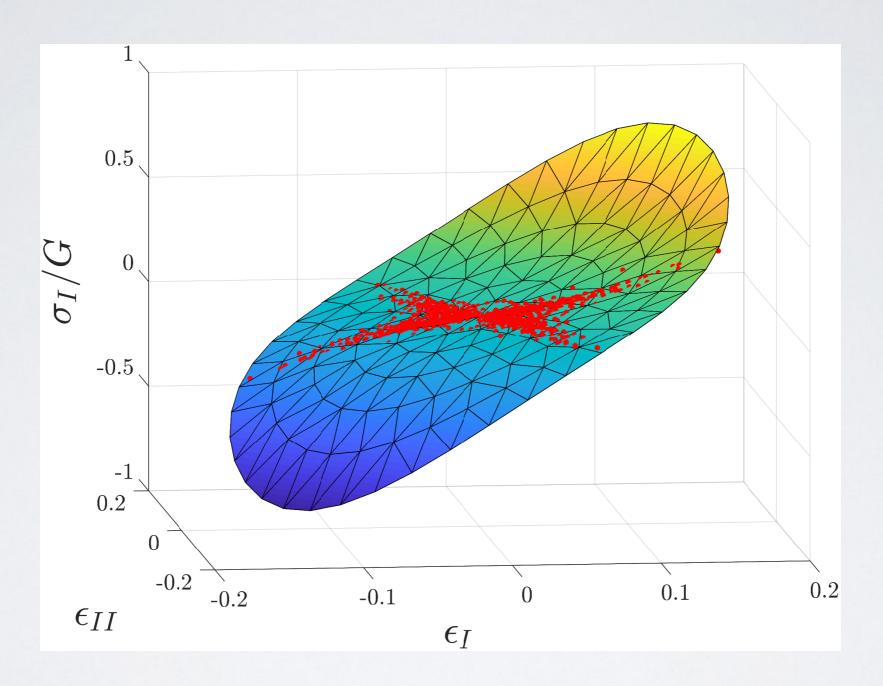

$$sol = Arg \underset{\sigma_e^X, \varepsilon_i, \sigma_i, ie}{Min} \frac{1}{2} \sum_{X} \sum_{e} w_e \| (\varepsilon_e^X - \varepsilon_{ie^X}^*, \sigma_e^X - \sigma_{ie^X}^*) \|_C^2$$


EXEMPLE SYNTHÉTIQUE

• Structure à comportement élastique non linéaire

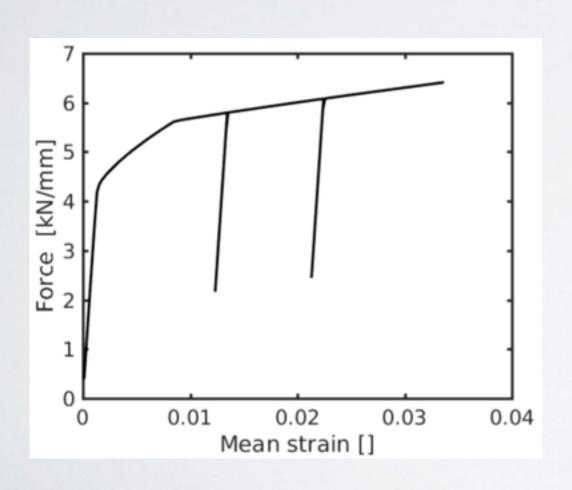

Géométrie initiale

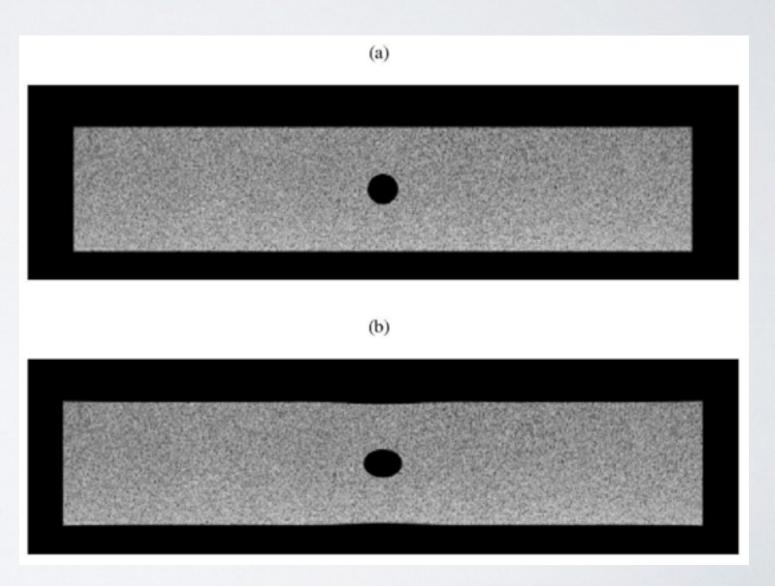
États déformés connus



ÉTATS MATÉRIAUX IDENTIFIÉS

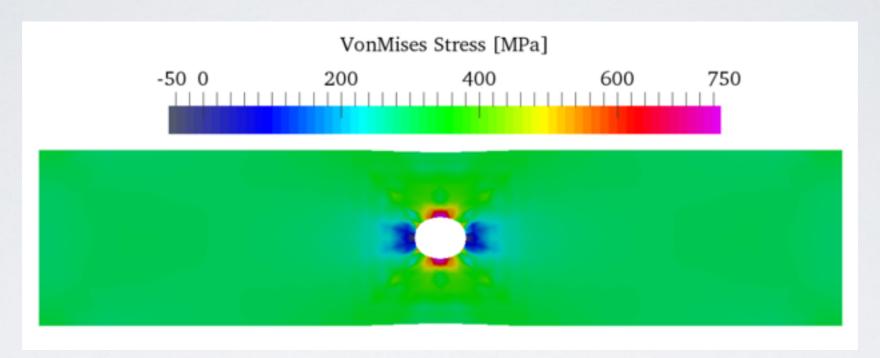
Le champ de déformation étant connu, on a trouvé les contraintes, sans passer par une loi de comportement

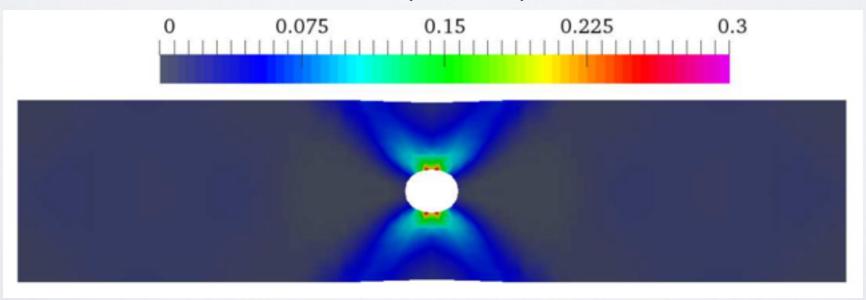

ÉTATS MATÉRIAUX IDENTIFIÉS



États matériaux mesurés placés sur la surface des états matériaux admissibles.

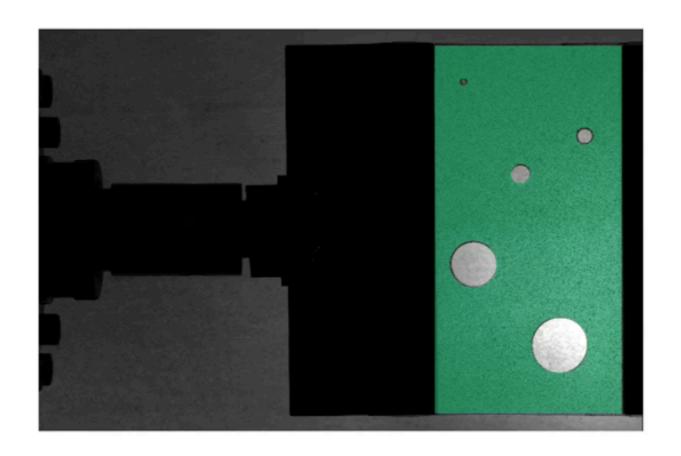
PLASTICITÉ


· Réthoré et al.



PLASTICITÉ

Contrainte de von Mises



Déformation plastique cumulée

PERSPECTIVES

• Sur de vrais élastomères et des vrais essais

Thèse Marie Dalémat

0.389064 0.338026 0.286989 0.235952 0.184914 0.133877 0.0828398 0.0318025 -0.0192348 -0.0702721 -0.121309 -0.172347 -0.223384 -0.274421 -0.325459

BIBLIOGRAPHIE

- [1] Trenton Kirchdoerfer and Michael Ortiz. Data-driven computational mechanics. Computer Methods in Applied Mechanics and Engineering, 304:81–101, 2016.
- [2] Trenton Kirchdoerfer and Michael Ortiz. Data driven computing with noisy material data sets. arXiv preprint arXiv:1702.01574, 2017.
- [3] Adrien Leygue, Julien Réthoré, Michel Coret, Laurent Stainier, and Erwan Verron. Data based derivation of material models. Submitted to CMAME, 2017.
- [4] Julien Réthoré, Adrien Leygue, Michel Coret, Laurent Stainier, and Erwan Verron. Computational measurements of stress fields from digital images. *Submitted to IJNME*, 2017.