

### Additive Manufacturing: Microstructures, Structures and Properties Application to fatigue

Eric Charkaluk

Laboratoire de Mécanique des Solides - UMR 7649 CNRS - Ecole Polytechnique



PhD works: Shadan Tabibian, Victor Chastand, Nora Dahdah, Yanis Balit





#### Outline

- Fatigue and Additive Manufacturing:
  - Fatigue : lifetime, crack initiation mechanisms
  - Some specificities of AM (micro)structures
- Fatigue of Ti-6AI-4V alloy produced by EBM and SLM
  - Effects of some process parameters
  - Crack initiation mechanisms
- What can we learn from other processes:
  - Some lessons from casting process
- Conclusions and prospects

### Fatigue of metallic structures: some effects on lifetime



 $N_f$ 

## Additive Manufacturing specificities

- Materials in AM:
  - fast solidification (martensite, ...)
  - microstructure: anisotropy, gradients, ...
  - multimaterials, interfaces, HAZ, ...
  - defects: roughness, porosities, unmelted zones, ...
- & Structures in AM:
  - lattices, ...
  - residual stresses, ...
  - instabilities, buckling, ...
  - thin structures, ...









## Additive Manufacturing and Fatigue: some key parameters

- Building parameters:
  - laser power, laser / substrate speed, powder flow rate, ...
- As-built specimens:
  - roughness
  - residual stresses
  - porosities
  - building direction
- Post-treatments:
  - machining, polishing



- heat-treatment (residual stresses, grain size, precipitation, ...)
- HIP (porosities)

Polissage

### Fatigue of AM metallic structures



#### Outline

- Fatigue and Additive Manufacturing:
  - Fatigue : lifetime, crack initiation mechanisms
  - Some specificities of AM (micro)structures
- Fatigue of Ti-6AI-4V alloy produced by EBM and SLM
  - Effects of some process parameters
  - Crack initiation mechanisms
- What can we learn from other processes:
  - Some lessons from casting process
- Conclusions and prospects

## Ti-6AI-4V alloy produced by EBM and SLM

#### THALES

- EBM & SLM: Powder-bed additive manufacturing process
- Microstructure: polycrystal with pores







## Ti-6AI-4V alloy produced by EBM and SLM

- Building parameters:
  - Iaser power, laser / substrate speed, powder flow rate, ...
- As-built specimens:
  - roughness
  - residual stresses
  - porosities
  - building direction (XY et Z)
- Post-treatments:
  - machining, polishing

- heat-treatment (residual stresses, grain size, precipitation, ...)
- HIP (porosities)

Aucum

Polissage

Aucum

Aucun

#### Fatigue tests results



#### Crack initiation mechanisms and « defects » a b Crack initiation Small internal defects Crack initiation 250 µm $\alpha$ -phase cluster? See GP (1993) 250 µm С **Crack** initiation Unmelted zones Crack initiation 250 µm Z directio 150 µm Z direction e Surface defects Crack initiation Crack initiation 500 µm 250 um

[Gilbert and Piehler (1993) Met Trans]

### **Critical defects**

#### Surface defects > Unmelted zones > Small internal defects



[Gunther et al. (2017) IJF]

### **Critical defects**

Surface defects > Unmelted zones > Porosities



#### **Critical defects**

Surface defects > Unmelted zones > Porosities

|                   | Surface | Internal unmelted zones | Small internal defects |
|-------------------|---------|-------------------------|------------------------|
| As-built          | 10      | 0                       | 3                      |
| XY and Z polished | 4       | 25                      | 12                     |
| HIP-polished      | 5       | 0                       | 10                     |

## Fatigue of Ti-6AI-4V alloy produced by EBM and SLM

#### Pores:

- size
- shape : « porosities » vs « unmelted zones »
- and position regarding:
  - the surface : « surface defects »
  - the other pores (cluster)
- Crack initiation and propagation at the microstructure scale?
- What can we learn from other processes?

### Outline

- Fatigue and Additive Manufacturing:
  - Fatigue : lifetime, crack initiation mechanisms
  - Some specificities of AM (micro)structures
- Fatigue of Ti-6Al-4V alloy produced by EBM and SLM
  - Effects of some process parameters
  - Crack initiation mechanisms
- What can we learn from other processes:
  - Some lessons from casting process
- Conclusions and prospects

### Some lessons from casting process

Casting process / Additive Manufacturing : similarities

- Solidification microstructures (but at different rates: AM > Casting)
- Grains and porosities
- Residual stresses (thermal gradients)
- Shrinking » vs « Unmelted zones »









## Crack initiation mechanisms: pores and shrinkage

#### Crack initiation:

- biggest pores or shrinkage, close to the surface, cluster effect
- quite similar as Additive Manufacturing
- CT-Tomography and in-situ tests in AM? And crack growth?



### Outline

- Fatigue and Additive Manufacturing:
  - Fatigue : lifetime, crack initiation mechanisms
  - Some specificities of AM (micro)structures
- Fatigue of Ti-6Al-4V alloy produced by EBM and SLM
  - Effects of some process parameters
  - Crack initiation mechanisms
- What can we learn from other processes:
  - Some lessons from casting process
- Conclusions and prospects

### Conclusions

- Microstructure and damage:
  - as-built structures not acceptable in fatigue: posttreatments (roughness, residual stresses, porosities)

#### damage depends on:

- geometrical gradient (notch effect)
- building direction
- microstructure gradient (surface / bulk)
- residual stresses (or relieved)
- distribution of size and shapes of pores or defects, location, cluster effect
- Porosities: probability to find the biggest defect in the more critical zone

## **Prospects:** towards probability of failure

- Failure probability:
  - Feret diameter or apogee of equivalent ellipse from porosities
  - Probability distribution: lognormal or exponential
  - Optimization method: maximum likehood or least-square minimization

22





Failure probability

[Charkaluk et al. (2014) Int. J. Fat.]

Computed Lifetime

# Prospects: repaired structures, multi materials

- Multi-materials, repaired structures:
  - fatigue and interfaces?
  - fatigue with gradient of microstructures?
  - fatigue tests: specimen geometry? Loading?



https://www.mmsonline.com/



316L by Clad

Wrought 316L

[PhD Y. Balit, under progress]

# Prospects: repaired structures, multi materials

#### From structure to microstructure



#### [Balit et al. (2018) EMMC conference]

#### [Wu et al. (2017) *Mat Design*]

## Prospects: fatigue of lattices

building

direction

5mm

#### • Fatigue of lattices: an open-problem!

- Representative Elementary Volume?
- Fatigue specimen and loadings?
- Metrology (strains, stresses, ...)
- Damage initiation and growth: instabilities?



Fig. 7. The progress of fatigue failure in the SLM Ti-6Al-4V lattice under a maximum fatigue stress of 50% yield strength.

25



# Prospects: fatigue of lattices

- Fatigue of lattices: an open-problem!
  - Microstructure? Roughness?





### Thank you for your attention



#### eric.charkaluk@polytechnique.edu