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Context
Multidisciplinary Analysis and Optimization

MDO problem: 2-discipline optimization problem (MDF approach)
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Multidisciplinary analysis (MDA): non-linear system of equations(
y1 = f1(x; y2)

y2 = f2(x; y1)
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Multidisciplinary analysis (MDA): non-linear system of equations
=⇒ Costly disciplinary solvers: one call to a disciplinary solver takes a long time to compute.
=⇒ Partitioned approach: disciplinary solvers are called iteratively until convergence.
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Multidisciplinary analysis (MDA): non-linear system of equations
=⇒ Costly disciplinary solvers: one call to a disciplinary solver takes a long time to compute.
=⇒ Partitioned approach: disciplinary solvers are called iteratively until convergence.
=⇒ Heavy computational cost: the MDA must be solved several times during the optimization.
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Context
Bayesian framework for MDO

Bayesian framework:

1 Replacement of one or more of the system’s functions by Gaussian Process approximations.

2 Adaptive enrichment of the GPs until the global optimum is found.

[1] Donald Jones, Matthias Schonlau, and William Welch. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13:455–492, 1998.
[2] Sylvain Dubreuil, Nathalie Bartoli, Thierry Lefebvre, and Christian Gogu. Towards an efficient global multidisciplinary design optimization algorithm. Structural and Multidisciplinary
Optimization, page 1739–1765, 2020
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Context
Bayesian framework for MDO

Bayesian framework:

1 Replacement of one or more of the system’s functions by Gaussian Process approximations.

2 Adaptive enrichment of the GPs until the global optimum is found.

Optimization algorithm (x)

MDA black box

Objective function
f̂obj(x)

f̂obj

Efficient Global Optimization (EGO) [1]:
• The objective function is replaced by a Gaus-

sian Process (GP).

✓ Surrogate is exact at training points.

✗ Each enrichment of the surrogate model re-
quires the resolution of the MDA.

[1] Donald Jones, Matthias Schonlau, and William Welch. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13:455–492, 1998.

[2] Sylvain Dubreuil, Nathalie Bartoli, Thierry Lefebvre, and Christian Gogu. Towards an efficient global multidisciplinary design optimization algorithm. Structural and Multidisciplinary
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Efficient Global Multidisciplinary Design Optimiza-
tion (EGMDO) [2]:

• The disciplinary solvers are replaced by in-
dependent Gaussian Processes.

✓ Resolution of the MDA requires only surrogate
evaluations.

✓ The disciplines are uncoupled.
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Objective function
f̂obj(x)

f̂obj

Efficient Global Multidisciplinary Design Optimiza-
tion (EGMDO) [2]:

• The disciplinary solvers are replaced by in-
dependent Gaussian Processes.

✗ The resulting objective function approximation
is not exact at the training points.

✗ Due to the non-linearity of the MDA, it is a non-
Gaussian random field.

[1] Donald Jones, Matthias Schonlau, and William Welch. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13:455–492, 1998.
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Objectives
Dealing with non-Gaussian objective and constraint functions

• The EGMDO framework proposes a solution to represent the random field modeling the random
objective function.

• It equally provides a strategy to reduce the uncertainty of the obtained objective function model,
here used to perform global optimization.

• Extension of the EGMDO framework to handle constraint functions which depend on the solution
of the MDA. Like the objective function, they are a non-Gaussian random field.
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Efficient Global Multidisciplinary Design Optimization
Using disciplinary surrogates

For a single design space point x , the MDA is described
by the non-linear system of equations:(

y1 = f1(x; y2)

y2 = f2(x; y1)
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Efficient Global Multidisciplinary Design Optimization
Using disciplinary surrogates

We want to estimate the solution of the MDA (y∗(x)) by
replacing each disciplinary solver by a GP:(

ŷ1 = —1(x; ŷ2) + ›1(x; ŷ2)

ŷ2 = —2(x; ŷ1) + ›2(x; ŷ1)
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ŷ2 = —2(x; ŷ1) + ›2(x; ŷ1)
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Efficient Global Multidisciplinary Design Optimization
Using disciplinary surrogates

Let Ξ = {‰1; :::; ‰nd } be a vector of standard Gaussian
random variables, we can model the uncertainty of the
random MDA as:(

ŷ1 = —1(x; ŷ2) + ff1(x; ŷ2)‰1

ŷ2 = —2(x; ŷ1) + ff2(x; ŷ1)‰2
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Efficient Global Multidisciplinary Design Optimization
Objective function approximation

Due to the random MDA, the objective function is a ran-
dom variable, of unknown distribution, at any point x ∈ X.

In EGMDO it is proposed to approximate this random vari-
able via Polynomial Chaos Expansion (PCE) [3]:

f̂ PCE
obj (xi ;Ξ) =

PX
j=1

aj(xi )Hj(Ξ); ∀xi ∈ DoEUQ

[3] R. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral Approach, Civil, Mechanical and
Other Engineering Series. Dover Publications (2003).
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Efficient Global Multidisciplinary Design Optimization
Objective function approximation

DoEUQ is a design of experiments that we can use to
obtain a continuous approximation of the random field
f̂ PCE
obj (x;Ξ).

In EGMDO the continuous model [4] is obtained by a com-
bined Karhunen-Loève (KL) decomposition and GP inter-
polation:

f̃obj(x;Ξ; ”) = —̃f̂obj
(x; ”) +

mX
k=1

 
PX
l=2

aT
l ’kHl(Ξ)

!
’̃k(x; ”)

In the figure, only the GP associated with —̃f̂obj
(x; ”) is rep-

resented.

[4] S. Dubreuil, N. Bartoli, C. Gogu, T. Lefebvre and J. Mas Colomer, Extreme value oriented random field
discretization based on an hybrid polynomial chaos expansion - Kriging approach, Computer Methods
in Applied Mechanics and Engineering, 332, pp. 540–571 (2018).
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Efficient Global Multidisciplinary Design Optimization
Uncertainty reduction steps

The purpose of the Bayesian framework is to reduce the
uncertainty of the model where the global optimum is
likely to be.

In EGMDO a two-step uncertainty reduction strategy is
proposed:

1 Uncertainty reduction by sampling of the design
space using an infill criterion.
Reduces the uncertainty with respect to the random
variable ”.

2 Uncertainty reduction by enrichment of the disci-
plinary solvers in points with high probability of
solving the problem.
Reduces the uncertainty with respect to the random
variable Ξ.

10/20Bayesian optimization with disciplinary GPsOctober 19, 2023



Efficient Global Multidisciplinary Design Optimization
Uncertainty reduction steps

The purpose of the Bayesian framework is to reduce the
uncertainty of the model where the global optimum is
likely to be.

In EGMDO a two-step uncertainty reduction strategy is
proposed:

1 Uncertainty reduction by sampling of the design
space using an infill criterion.
Reduces the uncertainty with respect to the random
variable ”.

2 Uncertainty reduction by enrichment of the disci-
plinary solvers in points with high probability of
solving the problem.
Reduces the uncertainty with respect to the random
variable Ξ.

10/20Bayesian optimization with disciplinary GPsOctober 19, 2023



Efficient Global Multidisciplinary Design Optimization
Uncertainty reduction steps

The purpose of the Bayesian framework is to reduce the
uncertainty of the model where the global optimum is
likely to be.

In EGMDO a two-step uncertainty reduction strategy is
proposed:

1 Uncertainty reduction by sampling of the design
space using an infill criterion.
Reduces the uncertainty with respect to the random
variable ”.

2 Uncertainty reduction by enrichment of the disci-
plinary solvers in points with high probability of
solving the problem.
Reduces the uncertainty with respect to the random
variable Ξ.

10/20Bayesian optimization with disciplinary GPsOctober 19, 2023



Efficient Global Multidisciplinary Design Optimization
Uncertainty reduction steps

The purpose of the Bayesian framework is to reduce the
uncertainty of the model where the global optimum is
likely to be.

In EGMDO a two-step uncertainty reduction strategy is
proposed:

1 Uncertainty reduction by sampling of the design
space using an infill criterion.
Reduces the uncertainty with respect to the random
variable ”.

2 Uncertainty reduction by enrichment of the disci-
plinary solvers in points with high probability of
solving the problem.
Reduces the uncertainty with respect to the random
variable Ξ.

10/20Bayesian optimization with disciplinary GPsOctober 19, 2023



Efficient Global Multidisciplinary Design Optimization
Uncertainty reduction steps

The purpose of the Bayesian framework is to reduce the
uncertainty of the model where the global optimum is
likely to be.

In EGMDO a two-step uncertainty reduction strategy is
proposed:

1 Uncertainty reduction by sampling of the design
space using an infill criterion.
Reduces the uncertainty with respect to the random
variable ”.

2 Uncertainty reduction by enrichment of the disci-
plinary solvers in points with high probability of
solving the problem.
Reduces the uncertainty with respect to the random
variable Ξ.

10/20Bayesian optimization with disciplinary GPsOctober 19, 2023



Efficient Global Multidisciplinary Design Optimization
Uncertainty reduction steps

The purpose of the Bayesian framework is to reduce the
uncertainty of the model where the global optimum is
likely to be.

In EGMDO a two-step uncertainty reduction strategy is
proposed:

1 Uncertainty reduction by sampling of the design
space using an infill criterion.
Reduces the uncertainty with respect to the random
variable ”.

2 Uncertainty reduction by enrichment of the disci-
plinary solvers in points with high probability of
solving the problem.
Reduces the uncertainty with respect to the random
variable Ξ.

10/20Bayesian optimization with disciplinary GPsOctober 19, 2023



Efficient Global Multidisciplinary Design Optimization
Uncertainty reduction steps

By iteratively sampling the design space and enriching the
disciplinary solvers the EGMDO algorithm is capable of
finding the unconstrained global optimum using few disci-
plinary solver calls.

How do we introduce constraints in the EGMDO frame-
work while still retaining the Bayesian framework?

Remarks:

We will focus on constraint functions which depend on any
subset of the converged coupling variables.
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C-EGMDO
Extension of the EGMDO framework to constrained problems

We introduce the inequality constraint g1(y1) ≥ 0.

• g1(y1) is a random variable of unknown distribution.
• PCE approximation of the random constraint function.
• Interpolation of the mean value of the PCE approximation.

An approximate unfeasible region is obtained based on
the continuous model of the constraint function.

Adapted uncertainty reduction strategy:

1 Sampling of the design space subject to constraints.
New points should be in the current feasible region.

2 Enrichment of the disciplinary solvers in points with high
probability of solving the constrained problem.
Uncertainty of the constraint function is accounted for.

13/20Bayesian optimization with disciplinary GPsOctober 19, 2023



C-EGMDO
Extension of the EGMDO framework to constrained problems

We introduce the inequality constraint g1(y1) ≥ 0.

• g1(y1) is a random variable of unknown distribution.
• PCE approximation of the random constraint function.
• Interpolation of the mean value of the PCE approximation.

An approximate unfeasible region is obtained based on
the continuous model of the constraint function.

Adapted uncertainty reduction strategy:

1 Sampling of the design space subject to constraints.
New points should be in the current feasible region.

2 Enrichment of the disciplinary solvers in points with high
probability of solving the constrained problem.
Uncertainty of the constraint function is accounted for.

13/20Bayesian optimization with disciplinary GPsOctober 19, 2023



C-EGMDO
Extension of the EGMDO framework to constrained problems

We introduce the inequality constraint g1(y1) ≥ 0.
• g1(y1) is a random variable of unknown distribution.

• PCE approximation of the random constraint function.
• Interpolation of the mean value of the PCE approximation.

An approximate unfeasible region is obtained based on
the continuous model of the constraint function.

Adapted uncertainty reduction strategy:

1 Sampling of the design space subject to constraints.
New points should be in the current feasible region.

2 Enrichment of the disciplinary solvers in points with high
probability of solving the constrained problem.
Uncertainty of the constraint function is accounted for.

13/20Bayesian optimization with disciplinary GPsOctober 19, 2023



C-EGMDO
Extension of the EGMDO framework to constrained problems

We introduce the inequality constraint g1(y1) ≥ 0.
• g1(y1) is a random variable of unknown distribution.
• PCE approximation of the random constraint function.

• Interpolation of the mean value of the PCE approximation.
An approximate unfeasible region is obtained based on
the continuous model of the constraint function.

Adapted uncertainty reduction strategy:

1 Sampling of the design space subject to constraints.
New points should be in the current feasible region.

2 Enrichment of the disciplinary solvers in points with high
probability of solving the constrained problem.
Uncertainty of the constraint function is accounted for.

13/20Bayesian optimization with disciplinary GPsOctober 19, 2023



C-EGMDO
Extension of the EGMDO framework to constrained problems

We introduce the inequality constraint g1(y1) ≥ 0.
• g1(y1) is a random variable of unknown distribution.
• PCE approximation of the random constraint function.
• Interpolation of the mean value of the PCE approximation.

An approximate unfeasible region is obtained based on
the continuous model of the constraint function.

Adapted uncertainty reduction strategy:

1 Sampling of the design space subject to constraints.
New points should be in the current feasible region.

2 Enrichment of the disciplinary solvers in points with high
probability of solving the constrained problem.
Uncertainty of the constraint function is accounted for.

13/20Bayesian optimization with disciplinary GPsOctober 19, 2023



C-EGMDO
Extension of the EGMDO framework to constrained problems

We introduce the inequality constraint g1(y1) ≥ 0.
• g1(y1) is a random variable of unknown distribution.
• PCE approximation of the random constraint function.
• Interpolation of the mean value of the PCE approximation.

An approximate unfeasible region is obtained based on
the continuous model of the constraint function.

Adapted uncertainty reduction strategy:

1 Sampling of the design space subject to constraints.
New points should be in the current feasible region.

2 Enrichment of the disciplinary solvers in points with high
probability of solving the constrained problem.
Uncertainty of the constraint function is accounted for.

13/20Bayesian optimization with disciplinary GPsOctober 19, 2023



C-EGMDO
Extension of the EGMDO framework to constrained problems

We introduce the inequality constraint g1(y1) ≥ 0.
• g1(y1) is a random variable of unknown distribution.
• PCE approximation of the random constraint function.
• Interpolation of the mean value of the PCE approximation.

An approximate unfeasible region is obtained based on
the continuous model of the constraint function.

Adapted uncertainty reduction strategy:

1 Sampling of the design space subject to constraints.
New points should be in the current feasible region.

2 Enrichment of the disciplinary solvers in points with high
probability of solving the constrained problem.
Uncertainty of the constraint function is accounted for.

13/20Bayesian optimization with disciplinary GPsOctober 19, 2023



C-EGMDO
Extension of the EGMDO framework to constrained problems

We introduce the inequality constraint g1(y1) ≥ 0.
• g1(y1) is a random variable of unknown distribution.
• PCE approximation of the random constraint function.
• Interpolation of the mean value of the PCE approximation.

An approximate unfeasible region is obtained based on
the continuous model of the constraint function.

Adapted uncertainty reduction strategy:

1 Sampling of the design space subject to constraints.
New points should be in the current feasible region.

2 Enrichment of the disciplinary solvers in points with high
probability of solving the constrained problem.
Uncertainty of the constraint function is accounted for.

13/20Bayesian optimization with disciplinary GPsOctober 19, 2023



C-EGMDO
Extension of the EGMDO framework to constrained problems

We introduce the inequality constraint g1(y1) ≥ 0.
• g1(y1) is a random variable of unknown distribution.
• PCE approximation of the random constraint function.
• Interpolation of the mean value of the PCE approximation.

An approximate unfeasible region is obtained based on
the continuous model of the constraint function.

Adapted uncertainty reduction strategy:

1 Sampling of the design space subject to constraints.
New points should be in the current feasible region.

2 Enrichment of the disciplinary solvers in points with high
probability of solving the constrained problem.
Uncertainty of the constraint function is accounted for.

13/20Bayesian optimization with disciplinary GPsOctober 19, 2023



Outline

1 Context

2 Objectives

3 EGMDO

4 C-EGMDO

5 Applications

6 Conclusion

14/20Bayesian optimization with disciplinary GPsOctober 19, 2023



Applications: analytical test case
Comparison with other optimization frameworks

Application to the analytical Sellar benchmark test case [5]:

argmin
z∈Z

fobj(z ; y
∗
cobj) = z33 + z2 + y∗1 + exp(−y∗2 )

s.t. 3:16− y∗1 ≤ 0

y∗2 − 24 ≤ 0

Gradient-based Gradient-free Bayesian

MDF-SLSQP IDF-SLSQP MDF-COBYLA IDF-COBYLA SEGO-WB2 C-EGMDO-WB2

Success† 43=100 59=100 55=100 90=100 95=100 96=100

E(N1) 68:1 51:6 167:1 105:5 28:3 13

E(N2) 68:1 51:6 167:1 105:5 28:3 9:8

†A run was considered successful if the solution found presented a relative error of no more than 1%.

[5] R. S. Sellar, S. M. Batill and J. E. Renaud, Response surface based, concurrent subspace optimization for multidisciplinary system design (1996).
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Applications: engineering test case
Bayesian framework for MDO

Optimization algorithm (x)

Aerodynamics
Fa = Ma(x; Us) Fa

Structures
Us = Ms (x; Us)Us

Objective function
DDiff(F

∗
a )

Ddiff

We define the following MDO problem which
couples an aerodynamic and structural solver:

argmin
x∈X

Ddiff =
∥D −Dref∥2

Dref

s.t. L = W

‹z ≤ ‹zmax

whereD is the drag, L is the lift,W is the weight
and ‹z is the vertical wing tip displacement.
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Optimization algorithm (x)

Objective function
DDiff(F

∗
a )

Ddiff

We define the following MDO problem which
couples an aerodynamic and structural solver:

argmin
x∈X

Ddiff =
∥D −Dref∥2

Dref

s.t. L = W

‹z ≤ ‹zmax

whereD is the drag, L is the lift,W is the weight
and ‹z is the vertical wing tip displacement.
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Applications: engineering test case
Aerostructural optimization: problem definition

• As design variables we take wing’s the angle of attack (¸) and the twist at tip („t ).
• The reference solutions are established using a gradient-based algorithm.

Bounds Optima
Lower Upper Global Local

minimize Ddiff −− −− ≈ 1× 10−6 ≈ 8× 10−2

w.r.t. ¸ 0 1 0:2287 0:5885
„t 0 1 0:1462 0:8821

subject to L = W 0 0 0 0
‹z − ‹zmax −− 0 −0:1589 0
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Applications: engineering test case
Aerostructural optimization: results

✓ C-EGMDO finds the global optimum for 7/10 runs when nmax = 15.
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Applications: engineering test case
Aerostructural optimization: results

✓ With a sufficiently large number of iterations, all runs are able to find the global optimum;

✓ The number of disciplinary solver calls does not increase significantly after 15 iterations;

✓ For nmax = 25, C-EGMDO is still much cheaper than the gradient based MDF-SLSQP framework.

C-EGMDO MDF-SLSQP

nmax 5 10 15 20 25 −−

Success† 2/10 6/10 7/10 9/10 10/10 2/10

E(na) 17.5 22.83 25.71 26.33 26.4 133.5
E(ns) 13.0 14.17 14.29 14.78 15.0 133.5

†A run was considered successful if the solution found presented a relative error of no more than 5%.
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Conclusion and future perspectives
The curse of dimensionality

The presented developments provided us with a Bayesian optimization framework that:

✓ Uses disciplinary surrogates to reduce the computational cost of the MDO problem;

✓ Is capable of handling equality and inequality constraints;

✓ Has been validated on an analytical benchmark problem as well as on an engineering application
problem;

✗ Is limited to a low number of design variables and low-dimensional coupling variable space.

Possible leads for future work thus include dimension reduction techniques, such as:

1 Kriging with Partial Least Squares [6] to handle a greater number of design variables;

2 Proper Orthogonal Decomposition to handle high-dimensional coupling variables in an MDA
context (as is done in [7]).

[6] M. Bouhlel, N. Bartoli, J. Morlier and A. Otsmane, Improving kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction, Structural and
Multidisciplinary Optimization, 53 (5), pp. 935–952 (2016)
[7] G. Berthelin, S. Dubreuil, M. Salaün, N. Bartoli and C. Gogu, Disciplinary proper orthogonal decomposition and interpolation for the resolution of parameterized multidisciplinary
analysis, International Journal for Numerical Methods in Engineering, 123 (15), pp. 3594–3626 (2022).
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Thank you for your attention!

Any questions?
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