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Context

Multidisciplinary Analysis and Optimization

MDO problem: 2-discipline optimization problem (MDF approach)
4{ Optimization algorithm (x) ‘ —»{ Mach, Angle of Attack, Thicknesses ‘

! {
Discipline 1 —> / Aerodynamic forces

1 = fi(x, y2)

Discipline 2 = Z
y2 = fa(x, y1)
]

l
P Objective function
@'— fobi (X, 7' ¥5) f Fuelburn (f,)
Multidisciplinary analysis (MDA): non-linear system of equations

1= f(x, y2)
y2 = h(x, y1)
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Context

Multidisciplinary Analysis and Optimization

MDO problem: 2-discipline optimization problem (MDF approach)

4{ Optimization algorithm (x) ‘ 4{ Mach, Angle of Attack, Thicknesses ‘

T

y?liCIfTI(IQeyl) Aerodynamic forces
Discipline 2
v2 = f(x 1)

Displacement

J
) Objective function
@‘7 fabi (X, y1. ¥5) f Fuelburn (fp)

Multidisciplinary analysis (MDA): non-linear system of equations

M
{

— Costly disciplinary solvers: one call to a disciplinary solver takes a long time to compute.
= Partitioned approach: disciplinary solvers are called iteratively until convergence.

EX -
RE':%BCLA%UEE ONERA 1Sae /'-K

October 19,2023 Bayesian optimization with disciplinary GPs 2/20
THE FRENCH AEROSPACE LAB SUPAERO




Context

Multidisciplinary Analysis and Optimization

MDO problem: 2-discipline optimization problem (MDF approach)

—»{ Optimization algorithm (x) ‘ 4{ Mach, Angle of Attack, Thicknesses ‘

T

y?liCIfTI(IQeyl) Aerodynamic forces
Discipline 2
v2 = f(x 1)

Displacement

J
) Objective function
@‘7 fabi (X, y1. ¥5) f Fuelburn (fp)

Multidisciplinary analysis (MDA): non-linear system of equations

0

— Costly disciplinary solvers: one call to a disciplinary solver takes a long time to compute.
= Partitioned approach: disciplinary solvers are called iteratively until convergence.
— Heavy computational cost: the MDA must be solved several times during the optimization.
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Context

Bayesian framework for MDO

Bayesian framework:
© Replacement of one or more of the system’s functions by Gaussian Process approximations.
@® Adaptive enrichment of the GPs until the global optimum is found.
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Context

Bayesian framework for MDO

Bayesian framework:

© Replacement of one or more of the system’s functions by Gaussian Process approximations.

@® Adaptive enrichment of the GPs until the global optimum is found.

4{ Optimization algorithm (x) ‘

I
y?lic;gl(lzifl) *’
Discipline 2
y2 = fo(x, y1)
l

foni Objective function
D’ ooy (%, Y72 ¥3)
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Context

Bayesian framework for MDO

Bayesian framework:

© Replacement of one or more of the system’s functions by Gaussian Process approximations.
@® Adaptive enrichment of the GPs until the global optimum is found.

4{ Optimization algorithm (x)
Efficient Global Optimization (EGO) [1]:

[

® The objective function is replaced by a Gaus-

sian Process (GP). MDA black box
v Surrogate is exact at training points.

X Each enrichment of the surrogate model re- |
quires the resolution of the MDA.

£ Objective function
e | >
obi fobj(x)

[1] Donald Jones, Matthias Schonlau, and William Welch. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13:455-492, 1998.
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Context

Bayesian framework for MDO

Bayesian framework:
© Replacement of one or more of the system’s functions by Gaussian Process approximations.
@® Adaptive enrichment of the GPs until the global optimum is found.

4{ Optimization algorithm (x) ‘

Efficient Global Multidisciplinary Design Optimiza- T

fion (EGMDO) [2]:
— - =7 iscipline

* The disciplinary solvers are replaced by in-
dependent Gaussian Processes. >

GP of
discipline 2

v Resolution of the MDA requires only surrogate
evaluations. J

. Objective function
v The disciplines are uncoupled. obj fobi (x)

[1] Donald Jones, Matthias Schonlau, and William Welch. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13:455-492, 1998.
[2] Sylvain Dubreuil, Nathalie Bartoli, Thierry Lefebvre, and Christian Gogu. Towards an efficient global multidisciplinary design optimization algorithm. Structural and Multidisciplinary
Optimization, page 1739-1765, 2020
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Context

Bayesian framework for MDO

Bayesian framework:

© Replacement of one or more of the system’s functions by Gaussian Process approximations.
@® Adaptive enrichment of the GPs until the global optimum is found.

Efficient Global Multidisciplinary Design Optimiza-

fion (EGMDO) [2]:

X The resulting objective function approximation
is not exact at the training points.

X Due to the non-linearity of the MDA, it is a non-
Gaussian random field.

4{ Optimization algorithm (x) ‘

I
GP of
discipline 1
of

GP
discipline 2

. Objective function
obj fonj(x)

[1] Donald Jones, Matthias Schonlau, and William Welch. Efficient global optimization of expensive black-box functions. Journal of Global Optimization, 13:455-492, 1998.
[2] Sylvain Dubreuil, Nathalie Bartoli, Thierry Lefebvre, and Christian Gogu. Towards an efficient global multidisciplinary design optimization algorithm. Structural and Multidisciplinary

Optimization, page 1739-1765, 2020
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Objectives

Dealing with non-Gaussian objective and constraint functions

® The EGMDO framework proposes a solution to represent the random field modeling the random
objective function.
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Objectives

Dealing with non-Gaussian objective and constraint functions

® The EGMDO framework proposes a solution to represent the random field modeling the random
objective function.

¢ |t equally provides a strategy to reduce the uncertainty of the obtained objective function model,
here used to perform global optimization.
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Objectives

Dealing with non-Gaussian objective and constraint functions

* The EGMDO framework proposes a solution to represent the random field modeling the random
objective function.

® |t equally provides a strategy to reduce the uncertainty of the obtained objective function model,
here used to perform global optimization.

e Extension of the EGMDO framework to handle constraint functions which depend on the solution
of the MDA. Like the objective function, they are a non-Gaussian random field.
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Efficient Global Multidisciplinary Design Optimization

Using disciplinary surrogates

25
""" yix, y2)
ya(x, y1)
Y MDA solution
20
For a single design space point x, the MDA is described
by the non-linear system of equations: » »
= el
y1 = fi(x, y2) 10 e — e
v2 = f(x, 1) ) S -
5
0 T
0 5 10 15 20 25
y2
moe O NERA e
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Efficient Global Multidisciplinary Design Optimization

Using disciplinary surrogates

...... y]()(, yz) . ~
""" ya(x, y1)
Y MDA solution <
20 4 — Hilx,y2) .

— Halx.y1)

We want to estimate the solution of the MDA (y*(x)) b
replacing each disciplinary solver by a GP:

N = pi(x, 92)
V2 = pa(x, 1)

]
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Efficient Global Multidisciplinary Design Optimization

Using disciplinary surrogates
25
...... axya)
ya(x,y1) Bl /
+ MDA solution
20 4 — Hilx,y2)

— H2(x,y1)
1(x, ¥2) % 301(x, y2) 5
We want to estimate the solution of the MDA (y*(x)) b AT
replacing each disciplinary solver by a GP: * /

{)71 = pi(x, 2) + e1(x, 12)

Vo = pa(x, 1) + e2(x, 1)

mrosae  ONERA 1588 /*‘
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Efficient Global Multidisciplinary Design Optimization

Using disciplinary surrogates
25
...... axya)
ya(x,y1) Bl /
+ MDA solution
201 — tlxy2)

— H2(x,y1)
Let be a vector of standard Gaussian My £30xy2)
. . H2(x, 1) £302(x,y1) -
random variables, we can model the uncertainty of the 1 /
random MDA as: .

V1= pa(x, 2) + o1(x, 12)
Vo = pa(x, 1) + o2(x, 1)
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Efficient Global Multidisciplinary Design Optimization

Using disciplinary surrogates

Let be a vector of standard Gaussian
random variables, we can model the uncertainty of the
random MDA as:

V1= pa(x, 2) + o1(x, 12)
Vo = pa(x, 1) + o2(x, 1)

25
...... y1(%,y2) »
ya(x, y1)
Y MDA solution
201 — tlxy2)

— H2(x,y1)
Hi(X, y2) £301(x, y2)
H2(x,y1) £305(x,y1)
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Efficient Global Multidisciplinary Design Optimization

Objective function approximation

25
_______ o
Due to the random MDA, the objective function is a ran- 201+ oD
dom variable, of unknown distribution, at any point x € X. g L0 lentoctic 2
P TS A R B

fobj(X)

-0.5
-1.04
-15
-2.0

-4 -2 0 2 4
X
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Efficient Global Multidisciplinary Design Optimization

Objective function approximation

_______ o

Due to the random MDA, the objective function is a ran- 201+ oD

dom variable, of unknown distribution, at any point x € X. 15 L2 Eontoori 2D
ol :

fobj(X)

-0.5
-1.04
-15
-2.0

-4 -2 0 2 4
X
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Efficient Global Multidisciplinary Design Optimization

Objective function approximation

Due to the random MDA, the objective function is a ran-
dom variable, of unknown distribution, at any point x € X.

In EGMDO it is proposed to approximate this random vari-
able via Polynomial Chaos Expansion (PCE) [3]:

j=1

[3] R. Ghanem and P. Spanos, Stochastic Finite Elements: A Spectral Approach, Civil, Mechanical and
Other Engineering Series. Dover Publications (2003).

25
....... oy
2.0 S (Xpofuer 2)
0 Elfan(Xpokser 2)
1.51

PDF of 725 (Xpo,q0 =)

foj(X)
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Efficient Global Multidisciplinary Design Optimization

Objective function approximation

DoEyq is a design of experiments that we can use to

obtain a continuous approximation of the random field il [
O’Z?E X, ) 2.01 HEF (o 5)
0 Elfan(Xpokser 2)
151 PDF of 725 (Xpog,qr 3)
K] k4
i
-1.04
=15
-2.0
-4 -2
e ONERA o
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Efficient Global Multidisciplinary Design Optimization

Objective function approximation

DoEyq is a design of experiments that we can use to

obtain a continuous approximation of the random field Rl [
foT)JCE X, ) 2.0 — Eliz,x,m]

o Initial DoEyg
In EGMDO the continuous model [4] is obtained by a com- L5 phaenee
bined Karhunen-Loéve (KL) decomposition and GP inter-

polation:

fobj(X)

fobi (x, =) = gy (1) + D > alokHi(5) | rl(x,m)

k=1 1=2
In the figure, only the GP associated with ﬁf;bj (x,n) is rep- 151
resented. 20
-4 -2 0 2 4

[4]S. Dubreuil, N. Bartoli, C. Gogu, T. Lefebvre and J. Mas Colomer, Extreme value oriented random field X

discretization based on an hybrid polynomial chaos expansion - Kriging approach, Computer Methods

in Applied Mechanics and Engineering, 332, pp. 540-571 (2018).
REPy ONERA ot
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Efficient Global Multidisciplinary Design Optimization
Uncertainty reduction steps

The purpose of the Bayesian framework is to reduce the

uncertainty of the model where the global optimum is i T
likely to be. 2.0 — Elli,(x0)
o Initial DoEyg
154 92% colnfidence

Fobj(X)

E | -
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Efficient Global Multidisciplinary Design Optimization

Uncertainty reduction steps

The purpose of the Bayesian framework is to reduce the

uncertainty of the model where the global optimum is ol I ™ 1o
likely to be. 204 — Eli,(x,m]

o Initial DoEyg
In EGMDO a two-step uncertainty reduction strategy is L5 1w 0% confidence e
proposed:

@ Uncertainty reduction by sampling of the design
space using an infill criterion.

Reduces the uncertainty with respect to the random

fobj(X)

variable n.
-15 5
20l s M .0
-4 -2 0 2 4
X
5£BLIQUE ONERA |Sae;’4 . . . L
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Efficient Global Multidisciplinary Design Optimization

Uncertainty reduction steps

The purpose of the Bayesian framework is to reduce the

uncertainty of the model where the global optimum is i T
likely to be. 204 — Eli,(x,m]

o |Initial DoEyg
In EGMDO a two-step uncertainty reduction strategy is 15/ % copfidence
proposed:

@ Uncertainty reduction by sampling of the design
space using an infill criterion.

Reduces the uncertainty with respect to the random

fobj(X)

variable n.
-15
-2.0 T
-4 -2 0 2 4
X
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Efficient Global Multidisciplinary Design Optimization

Uncertainty reduction steps

The purpose of the Bayesian framework is to reduce the

uncertainty of the model where the global optimum is ST T
likely to be. 2.0 FSE (X0ogi00 2)
0 Elfan(Xpokser 2)
In EGMDO a two-step uncertainty reduction strategy is 151 PDF of (oot 2
proposed: 101 8

@ Uncertainty reduction by sampling of the design sl e
space using an infill criterion.

Reduces the uncertainty with respect to the random
variable n.

Fobj(X)

® Uncertainty reduction by enrichment of the disci-
plinary solvers in points with high probability of -151
solving the problem.

X
ﬁpfmqu[ ONERA |Sae'/'~? ) o e
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Efficient Global Multidisciplinary Design Optimization

Uncertainty reduction steps

The purpose of the Bayesian framework is to reduce the

uncertainty of the model where the global optimum is ST T
likely to be. 2.0 FSE (X0ogi00 2)
0 Elfan(Xpokser 2)
In EGMDO a two-step uncertainty reduction strategy is 151 PDF of (oot 2
proposed: 101 8

@ Uncertainty reduction by sampling of the design sl e
space using an infill criterion.

Reduces the uncertainty with respect to the random
variable n.

Fobj(X)

® Uncertainty reduction by enrichment of the disci-
plinary solvers in points with high probability of -151
solving the problem. I

X
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Efficient Global Multidisciplinary Design Optimization

Uncertainty reduction steps

The purpose of the Bayesian framework is to reduce the

uncertainty of the model where the global optimum is ST T
likely to be. 2.0 FSE (X0ogi00 2)
o Elfobj(XDos0r 2)
In EGMDO a two-step uncertainty reduction strategy is 151 PDF of G (Xpoe,y. 2
proposed: 101

@ Uncertainty reduction by sampling of the design
space using an infill criterion.

Reduces the uncertainty with respect to the random
variable n.

Fobj(X)

® Uncertainty reduction by enrichment of the disci-
plinary solvers in points with high probability of -151
solving the problem. I

X
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Efficient Global Multidisciplinary Design Optimization

Uncertainty reduction steps

By iteratively sampling the design space and enriching the )5
disciplinary solvers the EGMDO algorithm is capable of i f;;g o
finding the unconstrained global optimum using few disci- 20 o i ot

99% confidence
151 :
interval

plinary solver calls.

fobj(X)

-15
-2.0
-4 -2 0 2 4
X
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Efficient Global Multidisciplinary Design Optimization

Uncertainty reduction steps

By iteratively sampling the design space and enriching the )5
disciplinary solvers the EGMDO algorithm is capable of | f;;g o
finding the unconstrained global optimum using few disci- G Iy

99% confidence
151 :
interval

plinary solver calls.

fobj(X)

-15
-2.0
-4 -2 0 2 4
X
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Efficient Global Multidisciplinary Design Optimization

Uncertainty reduction steps

By iteratively sampling the design space and enriching the )5
disciplinary solvers the EGMDO algorithm is capable of ™ f;;g o
finding the unconstrained global optimum using few disci- G =y

99% confidence
151 :
interval

plinary solver calls.

fobj(X)

-15
-2.0
-4 -2 0 2 4
X
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Efficient Global Multidisciplinary Design Optimization

Uncertainty reduction steps

By iteratively sampling the design space and enriching the

disciplinary solvers the EGMDO algorithm is capable of |~ fo[m; e

. . . N . . . 1 — Eliz,(x
finding the unconstrained global optimum using few disci- 2007, it ot
plinary solver calls. 15 Jf mam 39% confiderice

How do we introduce constraints in the EGMDO frame-
work while still retaining the Bayesian framework?

fobj(X)

Remarks:

We will focus on constraint functions which depend on any
subset of the converged coupling variables.
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C-EGMDO

Extension of the EGMDO framework to constrained problems

We introduce the inequality constraint g1(y1) > 0.

Fobj(X)

2o
o
~1
4 2 0o 2 a
X

5£5|_|ng ONERA IS B;’« . . . L
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C-EGMDO

Extension of the EGMDO framework to constrained problems

We introduce the inequality constraint g1(y1) > 0.

Fobj(X)

2o
o
Z1
4 2 0o 2 a
X

5£5|_|ng ONERA IS B;’« . . . L
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C-EGMDO

Extension of the EGMDO framework to constrained problems

We introduce the inequality constraint g1(y1) > 0.
® gi(y1) is a random variable of unknown distribution.

Fobj(X)

=25 T
-4 -2 o 2 4
1]
2o
o
~1d
4 2 0o 2 a
X
oo ONERA  [gap 5= o
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C-EGMDO

Extension of the EGMDO framework to constrained problems

We introduce the inequality constraint g1(y1) > 0.
® gi(y1) is a random variable of unknown distribution.

o of the random constraint function.

Fobj(X)

=25 T
-4 -2 o 2 4
11 .
) o
o
1|
; °
4 2 o 2 4
X
oo ONERA  [gap 5= o
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C-EGMDO

Extension of the EGMDO framework to constrained problems

2.0
154

We introduce the inequality constraint gi(y1) > 0.
® gi(y1) is a random variable of unknown distribution.

o of the random constraint function.

Fobj(X)

® |nterpolation of the mean value of the PCE approximation.

An approximate unfeasible region is obtained based on
the continuous model of the constraint function.

~1.54
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C-EGMDO

Extension of the EGMDO framework to constrained problems

We introduce the inequality constraint gi(y1) > 0.
® gi(y1) is a random variable of unknown distribution.

o of the random constraint function.

Fobj(X)

® |nterpolation of the mean value of the PCE approximation.

An approximate unfeasible region is obtained based on
the continuous model of the constraint function.

O B N W A& U O N ® ©

Adapted uncertainty reduction strategy:

© Sampling of the design space subject to constraints.
New points should be in the current feasible region.
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C-EGMDO

Extension of the EGMDO framework to constrained problems

We introduce the inequality constraint gi(y1) > 0. >0

1.5 4
® gi(y1) is a random variable of unknown distribution.
[ )

of the random constraint function.
® |nterpolation of the mean value of the PCE approximation.

An approximate unfeasible region is obtained based on
the continuous model of the constraint function.

Adapted uncertainty reduction strategy:

Fobj(X)

© Sampling of the design space subject to constraints.

14
New points should be in the current feasible region. _
X
] 0
1l
5|;:auqu[ ONERA Isae?«
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C-EGMDO

Extension of the EGMDO framework to constrained problems

2.0
154

We introduce the inequality constraint gi(y1) > 0.

® gi(y1) is a random variable of unknown distribution.
o of the random constraint function.

fobj(X)

® |nterpolation of the mean value of the PCE approximation.
An approximate unfeasible region is obtained based on

the continuous model of the constraint function. :iz
. . . _ ! . .
Adapted uncertainty reduction strategy: G S S S S
@ Sampling of the design space subject to constraints. L N !
New points should be in the current feasible region. R o "
Z 0 J ;
@® Enrichment of the disciplinary solvers in points with high 2 )
probability of solving the constrained problem. -1y i
—'4 -2 0 2 4
R ONERA Tt
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C-EGMDO

Extension of the EGMDO framework to constrained problems

2.0
154

We introduce the inequality constraint gi(y1) > 0.

® gi(y1) is a random variable of unknown distribution.

o of the random constraint function.

fobj(X)

® Interpolation of the mean value of the PCE approximation. 0§ ] o
An approximate unfeasible region is obtained based on ::
the continuous model of the constraint function. 0l :
Adapted uncertainty reduction strategy: 25— y

© Sampling of the design space subject to constraints. e
New points should be in the current feasible region. s V.

@® Enrichment of the disciplinary solvers in points with high
probability of solving the constrained problem. 11 o
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Applications: analytical test case

Comparison with other optimization frameworks

Application to the analytical Sellar benchmark test case [5]:
arg ng ﬂ,bj(z,ygobj) =Z 2+ y1 +exp(—y2)

st. 316—y <0
y, —24 <0

| Gradient-based | Gradient-free I Bayesian

|| MDF-SLSQP  IDF-SLSQP || MDF-COBYLA IDF-COBYLA || SEGO-WB2 || C-EGMDO-WB2

Success™ || 43/100 59/100 ||  55/100 90/100 || 95/100 || 96/100
E(N1) || 68.1 516 || 167.1 1055 || 283 | 13
E(N2) || 68.1 516 || 167.1 1055 || 283 | 9.8

TA run was considered successful if the solution found presented a relative error of no more than 1%.

[5] R. S. Sellar, S. M. Batill and J. E. Renaud, Response surface based, concurrent subspace optimization for multidisciplinary system design (1996).
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Applications: engineering test case

Bayesian framework for MDO

We define the following MDO problem which > Optimization algorithm (x) ‘
couples an aerodynamic and structural solver: I
Aerodynamics
Fa = Ma(x, Us)
: _ HD — Dref||2
argmin Dy = ————
xeX Dyt
Structures
st. L=W 6 Us = Ms(x, Us)
0z < 8Zmax
where D is the drag, L is the lift, W is the weight Dgitr < Oblectlve function
and 4z is the vertical wing tip displacement. Doirt(F3)
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Applications: engineering test case

Bayesian framework for MDO

We define the following MDO problem which > Optimization algorithm (x)
couples an aerodynamic and structural solver:
. D— D
argmin - Daii = ID = Drerl Drefresz
st. L=W
0z < 8Zmax

where D is the drag, L is the lift, W is the weight Dgitr < Objective function

and 4z is the vertical wing tip displacement. Doirt(F3)
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Applications: engineering test case

Aerostructural optimization: problem definition

® As design variables we take wing’s the angle of attack («) and the twist at tip (6).
® The reference solutions are established using a gradient-based algorithm.

Bounds Optima
Lower  Upper Global Local
minimize Dy — —— | m1x107% ~8x 1072
wrt o 0 1 0.2287 0.5885
0+ 0 1 0.1462 0.8821
subjectto L=W 0 0 0 0
6z — 6zmax —— 0 —0.1589 0
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Applications: engineering test case

Aerostructural optimization: results

v C-EGMDO finds the global optimum for 7/10 runs when npmax = 15.
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Applications: engineering test case

Aerostructural optimization: results

v C-EGMDO finds the global optimum for 7/10 runs when nnax = 15. What causes failed runs?
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# Global Optimum
¢ Local optimum
® Initial DoEyo

o Added points

Best point found
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Distance of D with respect to reference value
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02
-0.75
0.0 -1.50
0.0 02 04 0.6 0.8 1.0
Wing tip twist
e ONERA 1Sap o= e
FRANGAISE — 100G ~ October 19,2023  Bayesian optimization with disciplinary GPs 18/20
THE FRENCH AEROSPACE LAD S




Applications: engineering test case

Aerostructural optimization: results

v C-EGMDO finds the global optimum for 7/10 runs when nnax = 15. What causes failed runs?

1.0

3 30.00

# Global Optimum
¢ Local optimum
® Initial DoEyo

o Added points

Best point found

20.00

15.00

10.00

5.00

Angle of attack

1.50

Distance of D with respect to reference value

0.00
02
-0.75
0.0 -1.50
0.0 02 04 0.6 0.8 1.0
Wing tip twist
e ONERA 1Sap o= e
FRANGAISE — 100G ~ October 19,2023  Bayesian optimization with disciplinary GPs 18/20
THE FRENCH AEROSPACE LAD S




Applications: engineering test case

Aerostructural optimization: results

v With a sufficiently large number of iterations, all runs are able to find the global optimum;
v The number of disciplinary solver calls does not increase significantly after 15 iterations;

v For nmax = 25, C-EGMDO is still much cheaper than the gradient based MDF-SLSQP framework.

\ C-EGMDO | MDF-SLSQP
Mmac | 5 10 15 20 25 | ——
Success | 210 6/10 710  9/10  10/10 || 2110

E(na) 175 2283 2571 26.33 26.4 133.5
E(ns) 13.0 14.17 1429 1478 15.0 133.5

TA run was considered successful if the solution found presented a relative error of no more than 5%.
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Conclusion and future perspectives

The curse of dimensionality

The presented developments provided us with a Bayesian optimization framework that:
v Uses disciplinary surrogates to reduce the computational cost of the MDO problem;
v/ Is capable of handling equality and inequality constraints;

v/ Has been validated on an analytical benchmark problem as well as on an engineering application
problem;

X Is limited to a low number of design variables and low-dimensional coupling variable space.

Possible leads for future work thus include dimension reduction techniques, such as:
© Kriging with Partial Least Squares [6] to handle a greater number of design variables;

@® Proper Orthogonal Decomposition to handle high-dimensional coupling variables in an MDA
context (as is done in [7]).

[6] M. Bouhlel, N. Bartoli, J. Morlier and A. Otsmane, Improving kriging surrogates of high-dimensional design models by Partial Least Squares dimension reduction, Structural and
Multidisciplinary Optimization, 53 (5), pp. 935-952 (2016)

[7] G. Berthelin, S. Dubreuil, M. Salatin, N. Bartoli and C. Gogu, Disciplinary proper orthogonal decomposition and interpolation for the resolution of parameterized multidisciplinary
analysis, International Journal for Numerical Methods in Engineering, 123 (15), pp. 3594-3626 (2022).
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Thank you for your attention!
Any questions?

ines.cardoso@Qonera.fr
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